Cargando…
Cellular internalization mechanism of novel Raman probes designed for plant cells
Diphenylacetylene derivatives containing different polymeric components, poly(l-lysine) (pLys) or tetra(ethylene glycol) (TEG) were designed as novel Raman imaging probes with high Raman sensitivity and low cytotoxicity in living plant cells. The pLys-conjugated probe is internalized via an endocyto...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341950/ https://www.ncbi.nlm.nih.gov/pubmed/34458759 http://dx.doi.org/10.1039/d0cb00128g |
Sumario: | Diphenylacetylene derivatives containing different polymeric components, poly(l-lysine) (pLys) or tetra(ethylene glycol) (TEG) were designed as novel Raman imaging probes with high Raman sensitivity and low cytotoxicity in living plant cells. The pLys-conjugated probe is internalized via an endocytosis-dependent pathway, whereas TEG-conjugated probe most likely induces direct penetration into the plant cells. |
---|