Cargando…
Predicting the Risk of Depression Based on ECG Using RNN
This paper presents a model to predict the risk of depression based on electrocardiogram (ECG). This proposed model uses a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) autoencoder to predict normal, abnormal, and PVC heartbeats. The RNN model is a deep learning-based model to cla...
Autores principales: | Noor, Sumaiya Tarannum, Asad, Syeda Tasmiah, Khan, Mohammad Monirujjaman, Gaba, Gurjot Singh, Al-Amri, Jehad F., Masud, Mehedi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8342171/ https://www.ncbi.nlm.nih.gov/pubmed/34367269 http://dx.doi.org/10.1155/2021/1299870 |
Ejemplares similares
-
Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data
por: Alam, Kazi Nabiul, et al.
Publicado: (2021) -
A robust and lightweight secure access scheme for cloud based E-healthcare services
por: Masud, Mehedi, et al.
Publicado: (2021) -
A Novel Hybrid Precoding-Companding Technique for Peak-to-Average Power Ratio Reduction in 5G and beyond
por: Mounir, Mohamed, et al.
Publicado: (2021) -
RETRACTED ARTICLE: IoT-based real-time patients vital physiological parameters monitoring system using smart wearable sensors
por: Ahmed, Ajan, et al.
Publicado: (2022) -
Depression prediction based on LassoNet-RNN model: A longitudinal study
por: Han, Jiatong, et al.
Publicado: (2023)