Cargando…

Stability of a one-dimensional morphoelastic model for post-burn contraction

To deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the conce...

Descripción completa

Detalles Bibliográficos
Autores principales: Egberts, Ginger, Vermolen, Fred, van Zuijlen, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8342404/
https://www.ncbi.nlm.nih.gov/pubmed/34355270
http://dx.doi.org/10.1007/s00285-021-01648-5
Descripción
Sumario:To deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order [Formula: see text] . Next we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00285-021-01648-5.