Cargando…
Fast and accurate exhaustive higher-order epistasis search with BitEpi
Complex genetic diseases may be modulated by a large number of epistatic interactions affecting a polygenic phenotype. Identifying these interactions is difficult due to computational complexity, especially in the case of higher-order interactions where more than two genomic variants are involved. I...
Autores principales: | Bayat, Arash, Hosking, Brendan, Jain, Yatish, Hosking, Cameron, Kodikara, Milindi, Reti, Daniel, Twine, Natalie A., Bauer, Denis C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8342486/ https://www.ncbi.nlm.nih.gov/pubmed/34354094 http://dx.doi.org/10.1038/s41598-021-94959-y |
Ejemplares similares
-
VariantSpark: Cloud-based machine learning for association study of complex phenotype and large-scale genomic data
por: Bayat, Arash, et al.
Publicado: (2020) -
Data-driven platform for identifying variants of interest in COVID-19 virus
por: Ramarao-Milne, Priya, et al.
Publicado: (2022) -
Novel Alzheimer’s disease genes and epistasis identified using machine learning GWAS platform
por: Lundberg, Mischa, et al.
Publicado: (2023) -
Higher-order epistasis and phenotypic prediction
por: Zhou, Juannan, et al.
Publicado: (2022) -
Relevance of Higher-Order Epistasis in Drug Resistance
por: Lozovsky, Elena R, et al.
Publicado: (2020)