Cargando…
COVID-19 lung infection segmentation with a novel two-stage cross-domain transfer learning framework
With the global outbreak of COVID-19 in early 2020, rapid diagnosis of COVID-19 has become the urgent need to control the spread of the epidemic. In clinical settings, lung infection segmentation from computed tomography (CT) images can provide vital information for the quantification and diagnosis...
Autores principales: | Liu, Jiannan, Dong, Bo, Wang, Shuai, Cui, Hui, Fan, Deng-Ping, Ma, Jiquan, Chen, Geng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8342869/ https://www.ncbi.nlm.nih.gov/pubmed/34425317 http://dx.doi.org/10.1016/j.media.2021.102205 |
Ejemplares similares
-
Two-Stage Framework for Faster Semantic Segmentation
por: Cruz, Ricardo, et al.
Publicado: (2023) -
TSTELM: Two-Stage Transfer Extreme Learning Machine for Unsupervised Domain Adaptation
por: Zang, Shaofei, et al.
Publicado: (2022) -
Two-Stage Segmentation Framework Based on Distance Transformation
por: Huang, Xiaoyang, et al.
Publicado: (2021) -
Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation
por: Kushibar, Kaisar, et al.
Publicado: (2021) -
Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19
por: Vidal, Plácido L., et al.
Publicado: (2021)