Cargando…
Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren’s Syndrome
BACKGROUND: Primary Sjögren’s syndrome (pSS) is a chronic systemic autoimmune disease of the exocrine glands characterized by specific pathological features. Previous studies have pointed out that salivary glands from pSS patients express a unique profile of cytokines, adhesion molecules, and chemok...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343000/ https://www.ncbi.nlm.nih.gov/pubmed/34367157 http://dx.doi.org/10.3389/fimmu.2021.697157 |
_version_ | 1783734183940587520 |
---|---|
author | Li, Ning Li, Lei Wu, Mengyao Li, Yusi Yang, Jie Wu, Yicheng Xu, Haimin Luo, Danyang Gao, Yiming Fei, Xiaochun Jiang, Liting |
author_facet | Li, Ning Li, Lei Wu, Mengyao Li, Yusi Yang, Jie Wu, Yicheng Xu, Haimin Luo, Danyang Gao, Yiming Fei, Xiaochun Jiang, Liting |
author_sort | Li, Ning |
collection | PubMed |
description | BACKGROUND: Primary Sjögren’s syndrome (pSS) is a chronic systemic autoimmune disease of the exocrine glands characterized by specific pathological features. Previous studies have pointed out that salivary glands from pSS patients express a unique profile of cytokines, adhesion molecules, and chemokines compared to those from healthy controls. However, there is limited evidence supporting the utility of individual markers for different stages of pSS. This study aimed to explore potential biomarkers associated with pSS disease progression and analyze the associations between key genes and immune cells. METHODS: We combined our own RNA sequencing data with pSS datasets from the NCBI Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) via bioinformatics analysis. Salivary gland biopsies were collected from 14 pSS patients, 6 non-pSS patients, and 6 controls. Histochemical staining and transmission electron micrographs (TEM) were performed to macroscopically and microscopically characterize morphological features of labial salivary glands in different disease stages. Then, we performed quantitative PCR to validate hub genes. Finally, we analyzed correlations between selected hub genes and immune cells using the CIBERSORT algorithm. RESULTS: We identified twenty-eight DEGs that were upregulated in pSS patients compared to healthy controls. These were mainly involved in immune-related pathways and infection-related pathways. According to the morphological features of minor salivary glands, severe interlobular and periductal lymphocytic infiltrates, acinar atrophy and collagen in the interstitium, nuclear shrinkage, and microscopic organelle swelling were observed with pSS disease progression. Hub genes based on above twenty-eight DEGs, including MS4A1, CD19, TCL1A, CCL19, CXCL9, CD3G, and CD3D, were selected as potential biomarkers and verified by RT-PCR. Expression of these genes was correlated with T follicular helper cells, memory B cells and M1 macrophages. CONCLUSION: Using transcriptome sequencing and bioinformatics analysis combined with our clinical data, we identified seven key genes that have potential value for evaluating pSS severity. |
format | Online Article Text |
id | pubmed-8343000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83430002021-08-07 Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren’s Syndrome Li, Ning Li, Lei Wu, Mengyao Li, Yusi Yang, Jie Wu, Yicheng Xu, Haimin Luo, Danyang Gao, Yiming Fei, Xiaochun Jiang, Liting Front Immunol Immunology BACKGROUND: Primary Sjögren’s syndrome (pSS) is a chronic systemic autoimmune disease of the exocrine glands characterized by specific pathological features. Previous studies have pointed out that salivary glands from pSS patients express a unique profile of cytokines, adhesion molecules, and chemokines compared to those from healthy controls. However, there is limited evidence supporting the utility of individual markers for different stages of pSS. This study aimed to explore potential biomarkers associated with pSS disease progression and analyze the associations between key genes and immune cells. METHODS: We combined our own RNA sequencing data with pSS datasets from the NCBI Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) via bioinformatics analysis. Salivary gland biopsies were collected from 14 pSS patients, 6 non-pSS patients, and 6 controls. Histochemical staining and transmission electron micrographs (TEM) were performed to macroscopically and microscopically characterize morphological features of labial salivary glands in different disease stages. Then, we performed quantitative PCR to validate hub genes. Finally, we analyzed correlations between selected hub genes and immune cells using the CIBERSORT algorithm. RESULTS: We identified twenty-eight DEGs that were upregulated in pSS patients compared to healthy controls. These were mainly involved in immune-related pathways and infection-related pathways. According to the morphological features of minor salivary glands, severe interlobular and periductal lymphocytic infiltrates, acinar atrophy and collagen in the interstitium, nuclear shrinkage, and microscopic organelle swelling were observed with pSS disease progression. Hub genes based on above twenty-eight DEGs, including MS4A1, CD19, TCL1A, CCL19, CXCL9, CD3G, and CD3D, were selected as potential biomarkers and verified by RT-PCR. Expression of these genes was correlated with T follicular helper cells, memory B cells and M1 macrophages. CONCLUSION: Using transcriptome sequencing and bioinformatics analysis combined with our clinical data, we identified seven key genes that have potential value for evaluating pSS severity. Frontiers Media S.A. 2021-07-23 /pmc/articles/PMC8343000/ /pubmed/34367157 http://dx.doi.org/10.3389/fimmu.2021.697157 Text en Copyright © 2021 Li, Li, Wu, Li, Yang, Wu, Xu, Luo, Gao, Fei and Jiang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Li, Ning Li, Lei Wu, Mengyao Li, Yusi Yang, Jie Wu, Yicheng Xu, Haimin Luo, Danyang Gao, Yiming Fei, Xiaochun Jiang, Liting Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren’s Syndrome |
title | Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren’s Syndrome |
title_full | Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren’s Syndrome |
title_fullStr | Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren’s Syndrome |
title_full_unstemmed | Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren’s Syndrome |
title_short | Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren’s Syndrome |
title_sort | integrated bioinformatics and validation reveal potential biomarkers associated with progression of primary sjögren’s syndrome |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343000/ https://www.ncbi.nlm.nih.gov/pubmed/34367157 http://dx.doi.org/10.3389/fimmu.2021.697157 |
work_keys_str_mv | AT lining integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT lilei integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT wumengyao integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT liyusi integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT yangjie integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT wuyicheng integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT xuhaimin integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT luodanyang integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT gaoyiming integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT feixiaochun integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome AT jiangliting integratedbioinformaticsandvalidationrevealpotentialbiomarkersassociatedwithprogressionofprimarysjogrenssyndrome |