Cargando…
Combined treatment with valproic acid and estrogen has neuroprotective effects in ovariectomized mice with Alzheimer’s disease
Postmenopausal women with Alzheimer’s disease (AD) exhibit dramatically reduced sensitivity to estrogen replacement therapy, which is though to be related to an estrogen receptor (ER)α/ERβ ratio imbalance arising from a significantly decreased level of ERs of the brain. The aim of our study was to i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343327/ https://www.ncbi.nlm.nih.gov/pubmed/33642397 http://dx.doi.org/10.4103/1673-5374.308103 |
Sumario: | Postmenopausal women with Alzheimer’s disease (AD) exhibit dramatically reduced sensitivity to estrogen replacement therapy, which is though to be related to an estrogen receptor (ER)α/ERβ ratio imbalance arising from a significantly decreased level of ERs of the brain. The aim of our study was to investigate whether valproic acid (VPA) can enhance the beneficial effects of estrogen on cognitive function through restoration of ERα and ERβ expression in the brain. We removed the ovaries of female APP/PS1 mice to simulate the low estrogen levels present in postmenopausal women and then administered VPA (30 mg/kg, intraperitoneal injection, once daily), 17β-estradiol (E2) (2.4 μg, intraperitoneal injection, once daily), liquiritigenin (LG) (50 μg/kg, intragastric infusion, once daily), VPA + E2, or VPA + LG for 4 successive weeks. Compared with treatment with a single drug, treatment with VPA + E2 or VPA + LG significantly increased the level of glycogen synthase kinase 3β, increased the expression of estrogen receptor α, reduced the expression of small ubiquitin-like modifiers, and increased the level of estrogen receptor β. This resulted in enhanced sensitivity to estrogen therapy, reduced amyloid β aggregation, reduced abnormal phosphorylation of the tau protein, reduced neuronal loss, increased dendritic spine and postsynaptic density, and significantly alleviated memory loss and learning impairment in mice. This study was approved by the Chongqing Medical University Animal Protection and Ethics Committee, China on March 6, 2013. |
---|