Cargando…
The plasminogen activating system in the pathogenesis of Alzheimer’s disease
Dementia is a clinical syndrome that affects approximately 47 million people worldwide and is characterized by progressive and irreversible decline of cognitive, behavioral and sesorimotor functions. Alzheimer’s disease (AD) accounts for approximately 60–80% of all cases of dementia, and neuropathol...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343336/ https://www.ncbi.nlm.nih.gov/pubmed/33642369 http://dx.doi.org/10.4103/1673-5374.308076 |
_version_ | 1783734266176208896 |
---|---|
author | Yepes, Manuel |
author_facet | Yepes, Manuel |
author_sort | Yepes, Manuel |
collection | PubMed |
description | Dementia is a clinical syndrome that affects approximately 47 million people worldwide and is characterized by progressive and irreversible decline of cognitive, behavioral and sesorimotor functions. Alzheimer’s disease (AD) accounts for approximately 60–80% of all cases of dementia, and neuropathologically is characterized by extracellular deposits of insoluble amyloid-β (Aβ) and intracellular aggregates of hyperphosphorylated tau. Significantly, although for a long time it was believed that the extracellular accumulation of Aβ was the culprit of the symptoms observed in these patients, more recent studies have shown that cognitive decline in people suffering this disease is associated with soluble Aβ-induced synaptic dysfunction instead of the formation of insoluble Aβ-containing extracellular plaques. These observations are translationally relevant because soluble Aβ-induced synaptic dysfunction is an early event in AD that precedes neuronal death, and thus is amenable to therapeutic interventions to prevent cognitive decline before the progression to irreversible brain damage. The plasminogen activating (PA) system is an enzymatic cascade that triggers the degradation of fibrin by catalyzing the conversion of plasminogen into plasmin via two serine proteinases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Experimental evidence reported over the last three decades has shown that tPA and uPA play a role in the pathogenesis of AD. However, these studies have focused on the ability of these plasminogen activators to trigger plasmin-induced cleavage of insoluble Aβ-containing extracellular plaques. In contrast, recent evidence indicates that activity-dependent release of uPA from the presynaptic terminal of cerebral cortical neurons protects the synapse from the deleterious effects of soluble Aβ via a mechanism that does not require plasmin generation or the cleavage of Aβ fibrils. Below we discuss the role of the PA system in the pathogenesis of AD and the translational relevance of data published to this date. |
format | Online Article Text |
id | pubmed-8343336 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-83433362021-08-20 The plasminogen activating system in the pathogenesis of Alzheimer’s disease Yepes, Manuel Neural Regen Res Review Dementia is a clinical syndrome that affects approximately 47 million people worldwide and is characterized by progressive and irreversible decline of cognitive, behavioral and sesorimotor functions. Alzheimer’s disease (AD) accounts for approximately 60–80% of all cases of dementia, and neuropathologically is characterized by extracellular deposits of insoluble amyloid-β (Aβ) and intracellular aggregates of hyperphosphorylated tau. Significantly, although for a long time it was believed that the extracellular accumulation of Aβ was the culprit of the symptoms observed in these patients, more recent studies have shown that cognitive decline in people suffering this disease is associated with soluble Aβ-induced synaptic dysfunction instead of the formation of insoluble Aβ-containing extracellular plaques. These observations are translationally relevant because soluble Aβ-induced synaptic dysfunction is an early event in AD that precedes neuronal death, and thus is amenable to therapeutic interventions to prevent cognitive decline before the progression to irreversible brain damage. The plasminogen activating (PA) system is an enzymatic cascade that triggers the degradation of fibrin by catalyzing the conversion of plasminogen into plasmin via two serine proteinases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Experimental evidence reported over the last three decades has shown that tPA and uPA play a role in the pathogenesis of AD. However, these studies have focused on the ability of these plasminogen activators to trigger plasmin-induced cleavage of insoluble Aβ-containing extracellular plaques. In contrast, recent evidence indicates that activity-dependent release of uPA from the presynaptic terminal of cerebral cortical neurons protects the synapse from the deleterious effects of soluble Aβ via a mechanism that does not require plasmin generation or the cleavage of Aβ fibrils. Below we discuss the role of the PA system in the pathogenesis of AD and the translational relevance of data published to this date. Wolters Kluwer - Medknow 2021-02-19 /pmc/articles/PMC8343336/ /pubmed/33642369 http://dx.doi.org/10.4103/1673-5374.308076 Text en Copyright: © 2021 Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Yepes, Manuel The plasminogen activating system in the pathogenesis of Alzheimer’s disease |
title | The plasminogen activating system in the pathogenesis of Alzheimer’s disease |
title_full | The plasminogen activating system in the pathogenesis of Alzheimer’s disease |
title_fullStr | The plasminogen activating system in the pathogenesis of Alzheimer’s disease |
title_full_unstemmed | The plasminogen activating system in the pathogenesis of Alzheimer’s disease |
title_short | The plasminogen activating system in the pathogenesis of Alzheimer’s disease |
title_sort | plasminogen activating system in the pathogenesis of alzheimer’s disease |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343336/ https://www.ncbi.nlm.nih.gov/pubmed/33642369 http://dx.doi.org/10.4103/1673-5374.308076 |
work_keys_str_mv | AT yepesmanuel theplasminogenactivatingsysteminthepathogenesisofalzheimersdisease AT yepesmanuel plasminogenactivatingsysteminthepathogenesisofalzheimersdisease |