Cargando…

Towards a high-precision contactless fingerprint scanner for biometric authentication

The raging COVID-19 pandemic accentuates the urgent and compelling need for non-contact fingerprinting biometric authentication devices to mitigate the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other contagious infections. Current approaches to contactless...

Descripción completa

Detalles Bibliográficos
Autores principales: Oduah, Uzoma I., Kevin, Ifeanyichukwu F., Oluwole, Daniel O., Izunobi, Josephat U.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343378/
https://www.ncbi.nlm.nih.gov/pubmed/35083429
http://dx.doi.org/10.1016/j.array.2021.100083
Descripción
Sumario:The raging COVID-19 pandemic accentuates the urgent and compelling need for non-contact fingerprinting biometric authentication devices to mitigate the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other contagious infections. Current approaches to contactless fingerprinting scanners suffer limitations ranging from poor compatibility with two-dimensional equivalent touch-based fingerprint images to perspective distortions, inconstant resolution, motion blur images and low correlation factors. Herein, these constraints are tackled by implementing a system that enables the positioning of the target finger(s) at fixed vertical and horizontal distances away from the camera lens without the physical contact of the fingers with the device framework during scanning. A high-precision fingerprint pattern recognition of up to 97.51% correlation factor has been achieved, using this contactless method, by varying the background illuminating light and implementing two-dimensional imaging techniques and near-constant resolution. Additionally, a convenient contactless fingerprint acquisition process is reinforced through a unique architectural design.