Cargando…
Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP)
Nodules form on plant roots through the symbiotic relationship between soybean (Glycine max L. Merr.) roots and bacteria (Bradyrhizobium japonicum) and are an important structure where atmospheric nitrogen (N(2)) is fixed into bioavailable ammonia (NH(3)) for plant growth and development. Nodule qua...
Autores principales: | Jubery, Talukder Zaki, Carley, Clayton N., Singh, Arti, Sarkar, Soumik, Ganapathysubramanian, Baskar, Singh, Asheesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343430/ https://www.ncbi.nlm.nih.gov/pubmed/34396150 http://dx.doi.org/10.34133/2021/9834746 |
Ejemplares similares
-
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
“Canopy fingerprints” for characterizing three-dimensional point cloud data of soybean canopies
por: Young, Therin J., et al.
Publicado: (2023) -
Soybean Root System Architecture Trait Study through Genotypic, Phenotypic, and Shape-Based Clusters
por: Falk, Kevin G., et al.
Publicado: (2020) -
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017) -
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
por: Nagasubramanian, Koushik, et al.
Publicado: (2018)