Cargando…
Predicting Protein Therapeutic Candidates for Bovine Babesiosis Using Secondary Structure Properties and Machine Learning
Bovine babesiosis causes significant annual global economic loss in the beef and dairy cattle industry. It is a disease instigated from infection of red blood cells by haemoprotozoan parasites of the genus Babesia in the phylum Apicomplexa. Principal species are Babesia bovis, Babesia bigemina, and...
Autores principales: | Goodswen, Stephen J., Kennedy, Paul J., Ellis, John T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343536/ https://www.ncbi.nlm.nih.gov/pubmed/34367264 http://dx.doi.org/10.3389/fgene.2021.716132 |
Ejemplares similares
-
Applying Machine Learning to Predict the Exportome of Bovine and Canine Babesia Species That Cause Babesiosis
por: Goodswen, Stephen J., et al.
Publicado: (2021) -
A Gene-Based Positive Selection Detection Approach to Identify Vaccine Candidates Using Toxoplasma gondii as a Test Case Protozoan Pathogen
por: Goodswen, Stephen J., et al.
Publicado: (2018) -
Compilation of parasitic immunogenic proteins from 30 years of published research using machine learning and natural language processing
por: Goodswen, Stephen J., et al.
Publicado: (2022) -
A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms
por: Goodswen, Stephen J, et al.
Publicado: (2013) -
Machine learning and applications in microbiology
por: Goodswen, Stephen J, et al.
Publicado: (2021)