Cargando…

Mechanism Exploration of 3-Hinge Gyral Formation and Pattern Recognition

The 3-hinge gyral folding is the conjunction of gyrus crest lines from three different orientations. Previous studies have not explored the possible mechanisms of formation of such 3-hinge gyri, which are preserved across species in primate brains. We develop a biomechanical model to mimic the forma...

Descripción completa

Detalles Bibliográficos
Autores principales: Razavi, Mir Jalil, Liu, Tianming, Wang, Xianqiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343593/
https://www.ncbi.nlm.nih.gov/pubmed/34377991
http://dx.doi.org/10.1093/texcom/tgab044
Descripción
Sumario:The 3-hinge gyral folding is the conjunction of gyrus crest lines from three different orientations. Previous studies have not explored the possible mechanisms of formation of such 3-hinge gyri, which are preserved across species in primate brains. We develop a biomechanical model to mimic the formation of 3-hinge patterns on a real brain and determine how special types of 3-hinge patterns form in certain areas of the model. Our computational and experimental imaging results show that most tertiary convolutions and exact locations of 3-hinge patterns after growth and folding are unpredictable, but they help explain the consistency of locations and patterns of certain 3-hinge patterns. Growing fibers within the white matter is posited as a determining factor to affect the location and shape of these 3-hinge patterns. Even if the growing fibers do not exert strong enough forces to guide gyrification directly, they still may seed a heterogeneous growth profile that leads to the formation of 3-hinge patterns in specific locations. A minor difference in initial morphology between two growing model brains can lead to distinct numbers and locations of 3-hinge patterns after folding.