Cargando…

RNA-sequencing profiling analysis of pericyte-derived extracellular vesicle–mimetic nanovesicles-regulated genes in primary cultured fibroblasts from normal and Peyronie’s disease penile tunica albuginea

BACKGROUND: Peyronie’s disease (PD) is a severe fibrotic disease of the tunica albuginea that causes penis curvature and leads to penile pain, deformity, and erectile dysfunction. The role of pericytes in the pathogenesis of fibrosis has recently been determined. Extracellular vesicle (EV)–mimetic n...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Guo Nan, Piao, Shuguang, Liu, Zhiyong, Wang, Lei, Ock, Jiyeon, Kwon, Mi-Hye, Kim, Do-Kyun, Gho, Yong Song, Suh, Jun-Kyu, Ryu, Ji-Kan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344132/
https://www.ncbi.nlm.nih.gov/pubmed/34362357
http://dx.doi.org/10.1186/s12894-021-00872-x
Descripción
Sumario:BACKGROUND: Peyronie’s disease (PD) is a severe fibrotic disease of the tunica albuginea that causes penis curvature and leads to penile pain, deformity, and erectile dysfunction. The role of pericytes in the pathogenesis of fibrosis has recently been determined. Extracellular vesicle (EV)–mimetic nanovesicles (NVs) have attracted attention regarding intercellular communication between cells in the field of fibrosis. However, the global gene expression of pericyte-derived EV–mimetic NVs (PC–NVs) in regulating fibrosis remains unknown. Here, we used RNA-sequencing technology to investigate the potential target genes regulated by PC–NVs in primary fibroblasts derived from human PD plaque. METHODS: Human primary fibroblasts derived from normal and PD patients was cultured and treated with cavernosum pericytes isolated extracellular vesicle (EV)–mimetic nanovesicles (NVs). A global gene expression RNA-sequencing assay was performed on normal fibroblasts, PD fibroblasts, and PD fibroblasts treated with PC–NVs. Reverse transcription polymerase chain reaction (RT-PCR) was used for sequencing data validation. RESULTS: A total of 4135 genes showed significantly differential expression in the normal fibroblasts, PD fibroblasts, and PD fibroblasts treated with PC–NVs. However, only 91 contra-regulated genes were detected among the three libraries. Furthermore, 20 contra-regulated genes were selected and 11 showed consistent changes in the RNA-sequencing assay, which were validated by RT-PCR. CONCLUSION: The gene expression profiling results suggested that these validated genes may be good targets for understanding potential mechanisms and conducting molecular studies into PD. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12894-021-00872-x.