Cargando…
Gentamicin-Loaded Chitosan Nanoparticles Improve Its Therapeutic Effects on Brucella-Infected J774A.1 Murine Cells
BACKGROUND: Final elimination of some intracellular bacterial agents, such as Brucella, is often a complex issue and impossible to achieve, primarily due to the presence and survival of the bacteria within phagocytic cells. By penetrating into the cell membrane, drug delivery nanosystems can reduce...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Salvia Medical Sciences Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344153/ https://www.ncbi.nlm.nih.gov/pubmed/34466489 http://dx.doi.org/10.31661/gmj.v8i0.1296 |
_version_ | 1783734432129089536 |
---|---|
author | Razei, Ali Cheraghali, Abdol Majid Saadati, Mojtaba Fasihi Ramandi, Mahdi Panahi, Yunes Hajizade, Abbas Siadat, Seyed Davar Behrouzi, Ava |
author_facet | Razei, Ali Cheraghali, Abdol Majid Saadati, Mojtaba Fasihi Ramandi, Mahdi Panahi, Yunes Hajizade, Abbas Siadat, Seyed Davar Behrouzi, Ava |
author_sort | Razei, Ali |
collection | PubMed |
description | BACKGROUND: Final elimination of some intracellular bacterial agents, such as Brucella, is often a complex issue and impossible to achieve, primarily due to the presence and survival of the bacteria within phagocytic cells. By penetrating into the cell membrane, drug delivery nanosystems can reduce the number of intracellular bacteria. The aim of this study was to assess the efficacy of chitosan nanoparticles on the delivery of gentamicin into Brucella infected J774A.1 murine cells in vitro. MATERIALS AND METHODS: Chitosan nanoparticles (NPs) were synthesized using ionic gelation technique. The shape, size and charge of NPs, loading rate and release of the drug were investigated. Finally, the effects of gentamicin-loaded chitosan NPs (Gen-Cs) and free gentamicin on J774A.1 murine cells infected with these bacteria were examined. RESULTS: The mean size and charge of NPs were computed as 100 nm and +28mV, respectively. The loading capacity of NPs was 22%. About 70% of the drug was released from NPs during the first 8 hours. Antimicrobial activity of the two formulations showed that MIC (minimum inhibitory concentration) of the Gen-Cs and free drug was 3.1 and 6.25 µg, respectively. The minimum bactericidal concentration of the NPs-loaded drug and free drug was 6.25 and 12.5 µg, respectively. Cell culture analysis revealed that there was a significant reduction in the load of the intercellular bacteria in J774A.1 murine cells in both formulations. CONCLUSION: Our results showed the Gen-Cs have a proper potential for optimal treatment of intracellular bacterial agents. |
format | Online Article Text |
id | pubmed-8344153 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Salvia Medical Sciences Ltd
|
record_format | MEDLINE/PubMed |
spelling | pubmed-83441532021-08-30 Gentamicin-Loaded Chitosan Nanoparticles Improve Its Therapeutic Effects on Brucella-Infected J774A.1 Murine Cells Razei, Ali Cheraghali, Abdol Majid Saadati, Mojtaba Fasihi Ramandi, Mahdi Panahi, Yunes Hajizade, Abbas Siadat, Seyed Davar Behrouzi, Ava Galen Med J Original Article BACKGROUND: Final elimination of some intracellular bacterial agents, such as Brucella, is often a complex issue and impossible to achieve, primarily due to the presence and survival of the bacteria within phagocytic cells. By penetrating into the cell membrane, drug delivery nanosystems can reduce the number of intracellular bacteria. The aim of this study was to assess the efficacy of chitosan nanoparticles on the delivery of gentamicin into Brucella infected J774A.1 murine cells in vitro. MATERIALS AND METHODS: Chitosan nanoparticles (NPs) were synthesized using ionic gelation technique. The shape, size and charge of NPs, loading rate and release of the drug were investigated. Finally, the effects of gentamicin-loaded chitosan NPs (Gen-Cs) and free gentamicin on J774A.1 murine cells infected with these bacteria were examined. RESULTS: The mean size and charge of NPs were computed as 100 nm and +28mV, respectively. The loading capacity of NPs was 22%. About 70% of the drug was released from NPs during the first 8 hours. Antimicrobial activity of the two formulations showed that MIC (minimum inhibitory concentration) of the Gen-Cs and free drug was 3.1 and 6.25 µg, respectively. The minimum bactericidal concentration of the NPs-loaded drug and free drug was 6.25 and 12.5 µg, respectively. Cell culture analysis revealed that there was a significant reduction in the load of the intercellular bacteria in J774A.1 murine cells in both formulations. CONCLUSION: Our results showed the Gen-Cs have a proper potential for optimal treatment of intracellular bacterial agents. Salvia Medical Sciences Ltd 2019-10-29 /pmc/articles/PMC8344153/ /pubmed/34466489 http://dx.doi.org/10.31661/gmj.v8i0.1296 Text en Copyright© 2019, Galen Medical Journal. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ) |
spellingShingle | Original Article Razei, Ali Cheraghali, Abdol Majid Saadati, Mojtaba Fasihi Ramandi, Mahdi Panahi, Yunes Hajizade, Abbas Siadat, Seyed Davar Behrouzi, Ava Gentamicin-Loaded Chitosan Nanoparticles Improve Its Therapeutic Effects on Brucella-Infected J774A.1 Murine Cells |
title |
Gentamicin-Loaded Chitosan Nanoparticles Improve Its Therapeutic Effects on Brucella-Infected J774A.1 Murine Cells
|
title_full |
Gentamicin-Loaded Chitosan Nanoparticles Improve Its Therapeutic Effects on Brucella-Infected J774A.1 Murine Cells
|
title_fullStr |
Gentamicin-Loaded Chitosan Nanoparticles Improve Its Therapeutic Effects on Brucella-Infected J774A.1 Murine Cells
|
title_full_unstemmed |
Gentamicin-Loaded Chitosan Nanoparticles Improve Its Therapeutic Effects on Brucella-Infected J774A.1 Murine Cells
|
title_short |
Gentamicin-Loaded Chitosan Nanoparticles Improve Its Therapeutic Effects on Brucella-Infected J774A.1 Murine Cells
|
title_sort | gentamicin-loaded chitosan nanoparticles improve its therapeutic effects on brucella-infected j774a.1 murine cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344153/ https://www.ncbi.nlm.nih.gov/pubmed/34466489 http://dx.doi.org/10.31661/gmj.v8i0.1296 |
work_keys_str_mv | AT razeiali gentamicinloadedchitosannanoparticlesimproveitstherapeuticeffectsonbrucellainfectedj774a1murinecells AT cheraghaliabdolmajid gentamicinloadedchitosannanoparticlesimproveitstherapeuticeffectsonbrucellainfectedj774a1murinecells AT saadatimojtaba gentamicinloadedchitosannanoparticlesimproveitstherapeuticeffectsonbrucellainfectedj774a1murinecells AT fasihiramandimahdi gentamicinloadedchitosannanoparticlesimproveitstherapeuticeffectsonbrucellainfectedj774a1murinecells AT panahiyunes gentamicinloadedchitosannanoparticlesimproveitstherapeuticeffectsonbrucellainfectedj774a1murinecells AT hajizadeabbas gentamicinloadedchitosannanoparticlesimproveitstherapeuticeffectsonbrucellainfectedj774a1murinecells AT siadatseyeddavar gentamicinloadedchitosannanoparticlesimproveitstherapeuticeffectsonbrucellainfectedj774a1murinecells AT behrouziava gentamicinloadedchitosannanoparticlesimproveitstherapeuticeffectsonbrucellainfectedj774a1murinecells |