Cargando…

Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method

BACKGROUND: Advanced analytics, such as artificial intelligence (AI), increasingly gain relevance in medicine. However, patients’ responses to the involvement of AI in the care process remains largely unclear. The study aims to explore whether individuals were more likely to follow a recommendation...

Descripción completa

Detalles Bibliográficos
Autores principales: Soellner, Michaela, Koenigstorfer, Joerg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344186/
https://www.ncbi.nlm.nih.gov/pubmed/34362359
http://dx.doi.org/10.1186/s12911-021-01596-6
_version_ 1783734439690371072
author Soellner, Michaela
Koenigstorfer, Joerg
author_facet Soellner, Michaela
Koenigstorfer, Joerg
author_sort Soellner, Michaela
collection PubMed
description BACKGROUND: Advanced analytics, such as artificial intelligence (AI), increasingly gain relevance in medicine. However, patients’ responses to the involvement of AI in the care process remains largely unclear. The study aims to explore whether individuals were more likely to follow a recommendation when a physician used AI in the diagnostic process considering a highly (vs. less) severe disease compared to when the physician did not use AI or when AI fully replaced the physician. METHODS: Participants from the USA (n = 452) were randomly assigned to a hypothetical scenario where they imagined that they received a treatment recommendation after a skin cancer diagnosis (high vs. low severity) from a physician, a physician using AI, or an automated AI tool. They then indicated their intention to follow the recommendation. Regression analyses were used to test hypotheses. Beta coefficients (ß) describe the nature and strength of relationships between predictors and outcome variables; confidence intervals [CI] excluding zero indicate significant mediation effects. RESULTS: The total effects reveal the inferiority of automated AI (ß = .47, p = .001 vs. physician; ß = .49, p = .001 vs. physician using AI). Two pathways increase intention to follow the recommendation. When a physician performs the assessment (vs. automated AI), the perception that the physician is real and present (a concept called social presence) is high, which increases intention to follow the recommendation (ß = .22, 95% CI [.09; 0.39]). When AI performs the assessment (vs. physician only), perceived innovativeness of the method is high, which increases intention to follow the recommendation (ß = .15, 95% CI [− .28; − .04]). When physicians use AI, social presence does not decrease and perceived innovativeness increases. CONCLUSION: Pairing AI with a physician in medical diagnosis and treatment in a hypothetical scenario using topical therapy and oral medication as treatment recommendations leads to a higher intention to follow the recommendation than AI on its own. The findings might help develop practice guidelines for cases where AI involvement benefits outweigh risks, such as using AI in pathology and radiology, to enable augmented human intelligence and inform physicians about diagnoses and treatments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12911-021-01596-6.
format Online
Article
Text
id pubmed-8344186
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-83441862021-08-09 Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method Soellner, Michaela Koenigstorfer, Joerg BMC Med Inform Decis Mak Research Article BACKGROUND: Advanced analytics, such as artificial intelligence (AI), increasingly gain relevance in medicine. However, patients’ responses to the involvement of AI in the care process remains largely unclear. The study aims to explore whether individuals were more likely to follow a recommendation when a physician used AI in the diagnostic process considering a highly (vs. less) severe disease compared to when the physician did not use AI or when AI fully replaced the physician. METHODS: Participants from the USA (n = 452) were randomly assigned to a hypothetical scenario where they imagined that they received a treatment recommendation after a skin cancer diagnosis (high vs. low severity) from a physician, a physician using AI, or an automated AI tool. They then indicated their intention to follow the recommendation. Regression analyses were used to test hypotheses. Beta coefficients (ß) describe the nature and strength of relationships between predictors and outcome variables; confidence intervals [CI] excluding zero indicate significant mediation effects. RESULTS: The total effects reveal the inferiority of automated AI (ß = .47, p = .001 vs. physician; ß = .49, p = .001 vs. physician using AI). Two pathways increase intention to follow the recommendation. When a physician performs the assessment (vs. automated AI), the perception that the physician is real and present (a concept called social presence) is high, which increases intention to follow the recommendation (ß = .22, 95% CI [.09; 0.39]). When AI performs the assessment (vs. physician only), perceived innovativeness of the method is high, which increases intention to follow the recommendation (ß = .15, 95% CI [− .28; − .04]). When physicians use AI, social presence does not decrease and perceived innovativeness increases. CONCLUSION: Pairing AI with a physician in medical diagnosis and treatment in a hypothetical scenario using topical therapy and oral medication as treatment recommendations leads to a higher intention to follow the recommendation than AI on its own. The findings might help develop practice guidelines for cases where AI involvement benefits outweigh risks, such as using AI in pathology and radiology, to enable augmented human intelligence and inform physicians about diagnoses and treatments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12911-021-01596-6. BioMed Central 2021-08-06 /pmc/articles/PMC8344186/ /pubmed/34362359 http://dx.doi.org/10.1186/s12911-021-01596-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Soellner, Michaela
Koenigstorfer, Joerg
Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method
title Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method
title_full Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method
title_fullStr Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method
title_full_unstemmed Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method
title_short Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method
title_sort compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344186/
https://www.ncbi.nlm.nih.gov/pubmed/34362359
http://dx.doi.org/10.1186/s12911-021-01596-6
work_keys_str_mv AT soellnermichaela compliancewithmedicalrecommendationsdependingontheuseofartificialintelligenceasadiagnosticmethod
AT koenigstorferjoerg compliancewithmedicalrecommendationsdependingontheuseofartificialintelligenceasadiagnosticmethod