Cargando…
RCA2: a scalable supervised clustering algorithm that reduces batch effects in scRNA-seq data
The transcriptomic diversity of cell types in the human body can be analysed in unprecedented detail using single cell (SC) technologies. Unsupervised clustering of SC transcriptomes, which is the default technique for defining cell types, is prone to group cells by technical, rather than biological...
Autores principales: | Schmidt, Florian, Ranjan, Bobby, Lin, Quy Xiao Xuan, Krishnan, Vaidehi, Joanito, Ignasius, Honardoost, Mohammad Amin, Nawaz, Zahid, Venkatesh, Prasanna Nori, Tan, Joanna, Rayan, Nirmala Arul, Ong, Sin Tiong, Prabhakar, Shyam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344557/ https://www.ncbi.nlm.nih.gov/pubmed/34320202 http://dx.doi.org/10.1093/nar/gkab632 |
Ejemplares similares
-
DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data
por: Ranjan, Bobby, et al.
Publicado: (2021) -
scConsensus: combining supervised and unsupervised clustering for cell type identification in single-cell RNA sequencing data
por: Ranjan, Bobby, et al.
Publicado: (2021) -
Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge
por: Mukherjee, Sumit, et al.
Publicado: (2018) -
Scdrake: a reproducible and scalable pipeline for scRNA-seq data analysis
por: Kubovčiak, Jan, et al.
Publicado: (2023) -
Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis
por: Ben-Kiki, Oren, et al.
Publicado: (2022)