Cargando…
HAGLR promotes neuron differentiation through the miR-130a-3p-MeCP2 axis
Parkinson’s disease (PD) is a prevalent neurodegenerative disease. Currently, the molecular mechanisms underlying the progressions of PD are not fully understood. The human neuroblastoma cell line SH-SY5Y has been widely used as an in vitro model for PD. This study aims to investigate the molecular...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345017/ https://www.ncbi.nlm.nih.gov/pubmed/34430707 http://dx.doi.org/10.1515/med-2021-0301 |
Sumario: | Parkinson’s disease (PD) is a prevalent neurodegenerative disease. Currently, the molecular mechanisms underlying the progressions of PD are not fully understood. The human neuroblastoma cell line SH-SY5Y has been widely used as an in vitro model for PD. This study aims to investigate the molecular mechanisms of the non-coding RNA-mediated SH-SY5Y differentiation induced by retinoic acid (RA). By microArray analysis, lncRNA HAGLR was observed to be significantly upregulated during the RA-induced SH-SY5Y differentiation. Silencing HAGLR blocked the RA-induced SH-SY5Y differentiation. Moreover, bioinformatical analysis illustrated that miR-130a-3p contains binding sites for HAGLR. The RNA-pull down assay and luciferase assay demonstrated that HAGLR functioned as a ceRNA of miR-130a-3p in SH-SY5Y cells. Overexpression of miR-130a-3p effectively inhibited SH-SY5Y differentiation. We identified MeCP2, a vital molecule in neuronal diseases, to be a direct target of miR-130a-3p in SH-SY5Y cells by western blot and luciferase assays. The rescue experiments verified that recovery of miR-130a-3p in HAGLR-overexpressing SH-SY5Y cells could successfully overcome the RA-induced SH-SY5Y differentiation by targeting MeCP2. In summary, this study reveals a potential molecular mechanism for the lncRNA-HAGLR-promoted in vitro neuron differentiation by targeting the miR-130a-3p-MeCP2 axis, contributing to the understanding of the pathogenesis and progression of PD. |
---|