Cargando…
Precision Medicine and Triple-Negative Breast Cancer: Current Landscape and Future Directions
SIMPLE SUMMARY: The implementation of precision medicine will revolutionize cancer treatment paradigms. Notably, this goal is not far from reality: genetically similar cancers can be treated similarly. The heterogeneous nature of triple-negative breast cancer (TNBC) made it a suitable candidate to p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345034/ https://www.ncbi.nlm.nih.gov/pubmed/34359640 http://dx.doi.org/10.3390/cancers13153739 |
Sumario: | SIMPLE SUMMARY: The implementation of precision medicine will revolutionize cancer treatment paradigms. Notably, this goal is not far from reality: genetically similar cancers can be treated similarly. The heterogeneous nature of triple-negative breast cancer (TNBC) made it a suitable candidate to practice precision medicine. Using TNBC molecular subtyping and genomic profiling, a precision medicine-based clinical trial is ongoing. This review summarizes the current landscape and future directions of precision medicine and TNBC. ABSTRACT: Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer associated with a high recurrence and metastasis rate that affects African-American women disproportionately. The recent approval of targeted therapies for small subgroups of TNBC patients by the US ‘Food and Drug Administration’ is a promising development. The advancement of next-generation sequencing, particularly somatic exome panels, has raised hopes for more individualized treatment plans. However, the use of precision medicine for TNBC is a work in progress. This review will discuss the potential benefits and challenges of precision medicine for TNBC. A recent clinical trial designed to target TNBC patients based on their subtype-specific classification shows promise. Yet, tumor heterogeneity and sub-clonal evolution in primary and metastatic TNBC remain a challenge for oncologists to design adaptive precision medicine-based treatment plans. |
---|