Cargando…
Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
SIMPLE SUMMARY: The histopathologic type is one of the most important prognostic factors in gastric cancer (GC), which underpins the basic strategy for surgical management. In the present study, a fully automated approach was applied to distinguish differentiated/undifferentiated and non-mucinous/mu...
Autores principales: | Jang, Hyun-Jong, Song, In-Hye, Lee, Sung-Hak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345042/ https://www.ncbi.nlm.nih.gov/pubmed/34359712 http://dx.doi.org/10.3390/cancers13153811 |
Ejemplares similares
-
Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images
por: Song, JaeYen, et al.
Publicado: (2022) -
Feasibility of fully automated classification of whole slide images based on deep learning
por: Cho, Kyung-Ok, et al.
Publicado: (2020) -
Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach
por: Jang, Hyun-Jong, et al.
Publicado: (2021) -
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
por: Syrykh, Charlotte, et al.
Publicado: (2020) -
Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2022)