Cargando…
Machine Learning Approaches to Classify Primary and Metastatic Cancers Using Tissue of Origin-Based DNA Methylation Profiles
SIMPLE SUMMARY: Cancer metastasis is considered to be one of the most significant causes of cancer morbidity, accounting for up to 90% of cancer deaths. The accurate identification of a cancer’s origin and the types of cancer cells it comprises is crucial in enabling clinicians to decide better trea...
Autores principales: | Modhukur, Vijayachitra, Sharma, Shakshi, Mondal, Mainak, Lawarde, Ankita, Kask, Keiu, Sharma, Rajesh, Salumets, Andres |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345047/ https://www.ncbi.nlm.nih.gov/pubmed/34359669 http://dx.doi.org/10.3390/cancers13153768 |
Ejemplares similares
-
MBMethPred: a computational framework for the accurate classification of childhood medulloblastoma subgroups using data integration and AI-based approaches
por: Sharif Rahmani, Edris, et al.
Publicado: (2023) -
ExplORRNet: An interactive web tool to explore stage-wise miRNA expression profiles and their interactions with mRNA and lncRNA in human breast and gynecological cancers
por: Lawarde, Ankita, et al.
Publicado: (2023) -
Users’ Concerns About Endometriosis on Social Media: Sentiment Analysis and Topic Modeling Study
por: Goel, Rahul, et al.
Publicado: (2023) -
The cervical transcriptome changes during the menstrual cycle but does not predict the window of implantation
por: Pathare, Amruta D. S., et al.
Publicado: (2023) -
DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns
por: Lokk, Kaie, et al.
Publicado: (2014)