Cargando…

Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery

SIMPLE SUMMARY: Long bone metastases are frequently a pivotal point in the oncological history of patients. Weakening of the bone results in pathologic fractures that not only compromise patient function but also their survival. Therefore, the main issue for tumor boards remains timely assessment of...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyễn, Mỹ-Vân, Carlier, Christophe, Nich, Christophe, Gouin, François, Crenn, Vincent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345078/
https://www.ncbi.nlm.nih.gov/pubmed/34359563
http://dx.doi.org/10.3390/cancers13153662
_version_ 1783734543355740160
author Nguyễn, Mỹ-Vân
Carlier, Christophe
Nich, Christophe
Gouin, François
Crenn, Vincent
author_facet Nguyễn, Mỹ-Vân
Carlier, Christophe
Nich, Christophe
Gouin, François
Crenn, Vincent
author_sort Nguyễn, Mỹ-Vân
collection PubMed
description SIMPLE SUMMARY: Long bone metastases are frequently a pivotal point in the oncological history of patients. Weakening of the bone results in pathologic fractures that not only compromise patient function but also their survival. Therefore, the main issue for tumor boards remains timely assessment of the risk of fracture, as this is a key consideration in providing preventive surgery while also avoiding overtreatment. As the Mirels scoring system takes into account both the radiological and the clinical criteria, it has been used worldwide since the 1990s. However, due to increasing concern regarding the lack of accuracy, new thresholds have been defined for the identification of impending fractures that require prophylactic surgery, on the basis of axial cortical involvement and biomechanical models involving quantitative computed tomography. The aim of this review is to establish a state-of-the-art of the risk assessment of long bone metastases fractures, from simple radiologic scores to more complex multidimensional bone models, in order to define new decision-making tools. ABSTRACT: Long bone pathological fractures very much reflect bone metastases morbidity in many types of cancer. Bearing in mind that they not only compromise patient function but also survival, identifying impending fractures before the actual event is one of the main concerns for tumor boards. Indeed, timely prophylactic surgery has been demonstrated to increase patient quality of life as well as survival. However, early surgery for long bone metastases remains controversial as the current fracture risk assessment tools lack accuracy. This review first focuses on the gold standard Mirels rating system. It then explores other unique imaging thresholds such as axial or circumferential cortical involvement and the merits of nuclear imaging tools. To overcome the lack of specificity, other fracture prediction strategies have focused on biomechanical models based on quantitative computed tomography (CT): computed tomography rigidity analysis (CT-RA) and finite element analysis (CT-FEA). Despite their higher specificities in impending fracture assessment, their limited availability, along with a need for standardization, have limited their use in everyday practice. Currently, the prediction of long bone pathologic fractures is a multifactorial process. In this regard, machine learning could potentially be of value by taking into account clinical survival prediction as well as clinical and improved CT-RA/FEA data.
format Online
Article
Text
id pubmed-8345078
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83450782021-08-07 Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery Nguyễn, Mỹ-Vân Carlier, Christophe Nich, Christophe Gouin, François Crenn, Vincent Cancers (Basel) Review SIMPLE SUMMARY: Long bone metastases are frequently a pivotal point in the oncological history of patients. Weakening of the bone results in pathologic fractures that not only compromise patient function but also their survival. Therefore, the main issue for tumor boards remains timely assessment of the risk of fracture, as this is a key consideration in providing preventive surgery while also avoiding overtreatment. As the Mirels scoring system takes into account both the radiological and the clinical criteria, it has been used worldwide since the 1990s. However, due to increasing concern regarding the lack of accuracy, new thresholds have been defined for the identification of impending fractures that require prophylactic surgery, on the basis of axial cortical involvement and biomechanical models involving quantitative computed tomography. The aim of this review is to establish a state-of-the-art of the risk assessment of long bone metastases fractures, from simple radiologic scores to more complex multidimensional bone models, in order to define new decision-making tools. ABSTRACT: Long bone pathological fractures very much reflect bone metastases morbidity in many types of cancer. Bearing in mind that they not only compromise patient function but also survival, identifying impending fractures before the actual event is one of the main concerns for tumor boards. Indeed, timely prophylactic surgery has been demonstrated to increase patient quality of life as well as survival. However, early surgery for long bone metastases remains controversial as the current fracture risk assessment tools lack accuracy. This review first focuses on the gold standard Mirels rating system. It then explores other unique imaging thresholds such as axial or circumferential cortical involvement and the merits of nuclear imaging tools. To overcome the lack of specificity, other fracture prediction strategies have focused on biomechanical models based on quantitative computed tomography (CT): computed tomography rigidity analysis (CT-RA) and finite element analysis (CT-FEA). Despite their higher specificities in impending fracture assessment, their limited availability, along with a need for standardization, have limited their use in everyday practice. Currently, the prediction of long bone pathologic fractures is a multifactorial process. In this regard, machine learning could potentially be of value by taking into account clinical survival prediction as well as clinical and improved CT-RA/FEA data. MDPI 2021-07-21 /pmc/articles/PMC8345078/ /pubmed/34359563 http://dx.doi.org/10.3390/cancers13153662 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Nguyễn, Mỹ-Vân
Carlier, Christophe
Nich, Christophe
Gouin, François
Crenn, Vincent
Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery
title Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery
title_full Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery
title_fullStr Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery
title_full_unstemmed Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery
title_short Fracture Risk of Long Bone Metastases: A Review of Current and New Decision-Making Tools for Prophylactic Surgery
title_sort fracture risk of long bone metastases: a review of current and new decision-making tools for prophylactic surgery
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345078/
https://www.ncbi.nlm.nih.gov/pubmed/34359563
http://dx.doi.org/10.3390/cancers13153662
work_keys_str_mv AT nguyenmyvan fractureriskoflongbonemetastasesareviewofcurrentandnewdecisionmakingtoolsforprophylacticsurgery
AT carlierchristophe fractureriskoflongbonemetastasesareviewofcurrentandnewdecisionmakingtoolsforprophylacticsurgery
AT nichchristophe fractureriskoflongbonemetastasesareviewofcurrentandnewdecisionmakingtoolsforprophylacticsurgery
AT gouinfrancois fractureriskoflongbonemetastasesareviewofcurrentandnewdecisionmakingtoolsforprophylacticsurgery
AT crennvincent fractureriskoflongbonemetastasesareviewofcurrentandnewdecisionmakingtoolsforprophylacticsurgery