Cargando…
Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads
SIMPLE SUMMARY: Genomic profiling of cancer-derived materials in circulation has become an alternative approach for tumour genotyping. The detection of tumour origin markers such as DNA methylation in bodily fluids enables cancer screening, early-stage diagnosis and evaluation of therapy response. T...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345084/ https://www.ncbi.nlm.nih.gov/pubmed/34359688 http://dx.doi.org/10.3390/cancers13153787 |
_version_ | 1783734544790192128 |
---|---|
author | Soda, Narshone Gonzaga, Zennia Jean Pannu, Amandeep Singh Kashaninejad, Navid Kline, Richard Salomon, Carlos Nguyen, Nam-Trung Sonar, Prashant Rehm, Bernd H. A. Shiddiky, Muhammad J. A. |
author_facet | Soda, Narshone Gonzaga, Zennia Jean Pannu, Amandeep Singh Kashaninejad, Navid Kline, Richard Salomon, Carlos Nguyen, Nam-Trung Sonar, Prashant Rehm, Bernd H. A. Shiddiky, Muhammad J. A. |
author_sort | Soda, Narshone |
collection | PubMed |
description | SIMPLE SUMMARY: Genomic profiling of cancer-derived materials in circulation has become an alternative approach for tumour genotyping. The detection of tumour origin markers such as DNA methylation in bodily fluids enables cancer screening, early-stage diagnosis and evaluation of therapy response. The development of broad platform technologies that underpin many in vitro clinical diagnostic tests has brought about a paradigm shift in cancer management and diagnosis. This study developed a multifaceted technology platform based on bioengineered polymer nanobeads for efficient capture and electrochemical detection of DNA methylation in ovarian cancer patient samples. This could be a versatile diagnostic platform for detecting numerous disease biomarkers, thus allowing several disease diagnoses. ABSTRACT: DNA methylation is a cell-type-specific epigenetic marker that is essential for transcriptional regulation, silencing of repetitive DNA and genomic imprinting. It is also responsible for the pathogenesis of many diseases, including cancers. Herein, we present a simple approach for quantifying global DNA methylation in ovarian cancer patient plasma samples based on a new class of biopolymer nanobeads. Our approach utilises the immune capture of target DNA and electrochemical quantification of global DNA methylation level within the targets in a three-step strategy that involves (i) initial preparation of target single-stranded DNA (ss-DNA) from the plasma of the patients’ samples, (ii) direct adsorption of polymer nanobeads on the surface of a bare screen-printed gold electrode (SPE-Au) followed by the immobilisation of 5-methylcytosine (5mC)-horseradish peroxidase (HRP) antibody, and (iii) immune capture of target ss-DNA onto the electrode-bound PHB/5mC-HRP antibody conjugates and their subsequent qualification using the hydrogen peroxide/horseradish peroxidase/hydroquinone (H(2)O(2)/HRP/HQ) redox cycling system. In the presence of methylated DNA, the enzymatically produced (in situ) metabolites, i.e., benzoquinone (BQ), binds irreversibly to cellular DNA resulting in the unstable formation of DNA adducts and induced oxidative DNA strand breakage. These events reduce the available BQ in the system to support the redox cycling process and sequel DNA saturation on the platform, subsequently causing high Coulombic repulsion between BQ and negatively charged nucleotide strands. Thus, the increase in methylation levels on the electrode surface is inversely proportional to the current response. The method could successfully detect as low as 5% methylation level. In addition, the assay showed good reproducibility (% RSD ≤ 5%) and specificity by analysing various levels of methylation in cell lines and plasma DNA samples from patients with ovarian cancer. We envision that our bioengineered polymer nanobeads with high surface modification versatility could be a useful alternative platform for the electrochemical detection of varying molecular biomarkers. |
format | Online Article Text |
id | pubmed-8345084 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83450842021-08-07 Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads Soda, Narshone Gonzaga, Zennia Jean Pannu, Amandeep Singh Kashaninejad, Navid Kline, Richard Salomon, Carlos Nguyen, Nam-Trung Sonar, Prashant Rehm, Bernd H. A. Shiddiky, Muhammad J. A. Cancers (Basel) Article SIMPLE SUMMARY: Genomic profiling of cancer-derived materials in circulation has become an alternative approach for tumour genotyping. The detection of tumour origin markers such as DNA methylation in bodily fluids enables cancer screening, early-stage diagnosis and evaluation of therapy response. The development of broad platform technologies that underpin many in vitro clinical diagnostic tests has brought about a paradigm shift in cancer management and diagnosis. This study developed a multifaceted technology platform based on bioengineered polymer nanobeads for efficient capture and electrochemical detection of DNA methylation in ovarian cancer patient samples. This could be a versatile diagnostic platform for detecting numerous disease biomarkers, thus allowing several disease diagnoses. ABSTRACT: DNA methylation is a cell-type-specific epigenetic marker that is essential for transcriptional regulation, silencing of repetitive DNA and genomic imprinting. It is also responsible for the pathogenesis of many diseases, including cancers. Herein, we present a simple approach for quantifying global DNA methylation in ovarian cancer patient plasma samples based on a new class of biopolymer nanobeads. Our approach utilises the immune capture of target DNA and electrochemical quantification of global DNA methylation level within the targets in a three-step strategy that involves (i) initial preparation of target single-stranded DNA (ss-DNA) from the plasma of the patients’ samples, (ii) direct adsorption of polymer nanobeads on the surface of a bare screen-printed gold electrode (SPE-Au) followed by the immobilisation of 5-methylcytosine (5mC)-horseradish peroxidase (HRP) antibody, and (iii) immune capture of target ss-DNA onto the electrode-bound PHB/5mC-HRP antibody conjugates and their subsequent qualification using the hydrogen peroxide/horseradish peroxidase/hydroquinone (H(2)O(2)/HRP/HQ) redox cycling system. In the presence of methylated DNA, the enzymatically produced (in situ) metabolites, i.e., benzoquinone (BQ), binds irreversibly to cellular DNA resulting in the unstable formation of DNA adducts and induced oxidative DNA strand breakage. These events reduce the available BQ in the system to support the redox cycling process and sequel DNA saturation on the platform, subsequently causing high Coulombic repulsion between BQ and negatively charged nucleotide strands. Thus, the increase in methylation levels on the electrode surface is inversely proportional to the current response. The method could successfully detect as low as 5% methylation level. In addition, the assay showed good reproducibility (% RSD ≤ 5%) and specificity by analysing various levels of methylation in cell lines and plasma DNA samples from patients with ovarian cancer. We envision that our bioengineered polymer nanobeads with high surface modification versatility could be a useful alternative platform for the electrochemical detection of varying molecular biomarkers. MDPI 2021-07-27 /pmc/articles/PMC8345084/ /pubmed/34359688 http://dx.doi.org/10.3390/cancers13153787 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Soda, Narshone Gonzaga, Zennia Jean Pannu, Amandeep Singh Kashaninejad, Navid Kline, Richard Salomon, Carlos Nguyen, Nam-Trung Sonar, Prashant Rehm, Bernd H. A. Shiddiky, Muhammad J. A. Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads |
title | Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads |
title_full | Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads |
title_fullStr | Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads |
title_full_unstemmed | Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads |
title_short | Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads |
title_sort | electrochemical detection of global dna methylation using biologically assembled polymer beads |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345084/ https://www.ncbi.nlm.nih.gov/pubmed/34359688 http://dx.doi.org/10.3390/cancers13153787 |
work_keys_str_mv | AT sodanarshone electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT gonzagazenniajean electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT pannuamandeepsingh electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT kashaninejadnavid electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT klinerichard electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT salomoncarlos electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT nguyennamtrung electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT sonarprashant electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT rehmberndha electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads AT shiddikymuhammadja electrochemicaldetectionofglobaldnamethylationusingbiologicallyassembledpolymerbeads |