Cargando…
Statistical Meta-Analysis of Risk Factors for Endometrial Cancer and Development of a Risk Prediction Model Using an Artificial Neural Network Algorithm
SIMPLE SUMMARY: A robust and comprehensive meta-analysis, for the first time, identified definitely that BMI is by far the most influential risk factor in endometrial cancer. Risk factors were previously only studied individually and or in smaller meta-analysis studies which grouped some factors tog...
Autores principales: | Hutt, Suzanna, Mihaies, Denis, Karteris, Emmanouil, Michael, Agnieszka, Payne, Annette M., Chatterjee, Jayanta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345114/ https://www.ncbi.nlm.nih.gov/pubmed/34359595 http://dx.doi.org/10.3390/cancers13153689 |
Ejemplares similares
-
Diagnostic Accuracy of Liquid Biomarkers for the Non-Invasive Diagnosis of Endometrial Cancer: A Systematic Review and Meta-Analysis
por: Karkia, Rebecca, et al.
Publicado: (2022) -
In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC
por: Zahra, Aeman, et al.
Publicado: (2022) -
Endometrial changes in estrogen and progesterone receptor expression during implantation in an oocyte donation program
por: Klonos, Eleftherios, et al.
Publicado: (2020) -
Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer
por: Kumar, Juhi, et al.
Publicado: (2019) -
Deciphering the Role of microRNA Mediated Regulation of Coronin 1C in Glioblastoma Development and Metastasis
por: Mustafov, Denis, et al.
Publicado: (2023)