Cargando…
Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models
SIMPLE SUMMARY: Head and neck squamous cell carcinoma (HNSCC) is the most common mucosal malignancy of the head and neck and a leading cause of cancer death. HNSCC arises from different primary anatomical locations that are typically combined during radiomic analyses assuming that the radiomic featu...
Autores principales: | Liu, Xiaoyang, Maleki, Farhad, Muthukrishnan, Nikesh, Ovens, Katie, Huang, Shao Hui, Pérez-Lara, Almudena, Romero-Sanchez, Griselda, Bhatnagar, Sahir Rai, Chatterjee, Avishek, Pusztaszeri, Marc Philippe, Spatz, Alan, Batist, Gerald, Payabvash, Seyedmehdi, Haider, Stefan P., Mahajan, Amit, Reinhold, Caroline, Forghani, Behzad, O’Sullivan, Brian, Yu, Eugene, Forghani, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345201/ https://www.ncbi.nlm.nih.gov/pubmed/34359623 http://dx.doi.org/10.3390/cancers13153723 |
Ejemplares similares
-
Radiomics and Artificial Intelligence for Biomarker and Prediction Model Development in Oncology
por: Forghani, Reza, et al.
Publicado: (2019) -
Radiomics and machine learning for the diagnosis of pediatric cervical non-tuberculous mycobacterial lymphadenitis
por: Al Bulushi, Yarab, et al.
Publicado: (2022) -
Generalizability of Machine Learning Models: Quantitative Evaluation
of Three Methodological Pitfalls
por: Maleki, Farhad, et al.
Publicado: (2022) -
Dual-Energy CT Texture Analysis With Machine Learning for the Evaluation and Characterization of Cervical Lymphadenopathy
por: Seidler, Matthew, et al.
Publicado: (2019) -
CT-based radiomics model with machine learning for predicting primary treatment failure in diffuse large B-cell Lymphoma
por: Santiago, Raoul, et al.
Publicado: (2021)