Cargando…
On the Convergence of the Number of Exceedances of Nonstationary Normal Sequences
It is known that the number of exceedances of normal sequences is asymptotically a Poisson random variable, under certain restrictions. We analyze the rate of convergence to the Poisson limit and extend the result known in the stationary case to nonstationary normal sequences by using the Stein-Chen...
Autores principales: | Hüsler, J., Kratz, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345283/ https://www.ncbi.nlm.nih.gov/pubmed/37405288 http://dx.doi.org/10.6028/jres.099.051 |
Ejemplares similares
-
Nonstationary Temperature-Duration-Frequency curves
por: Ouarda, Taha B. M. J., et al.
Publicado: (2018) -
Theory of nonstationary quantum oscillators
por: Markov, Moisei Aleksandrovich
Publicado: (1992) -
Modelling Nonstationary Gene Regulatory Processes
por: Grzegorcyzk, Marco, et al.
Publicado: (2010) -
New method for analysis of nonstationary signals
por: Stepien, Robert A
Publicado: (2011) -
Nonstationary Pharmacokinetics of Caspofungin in ICU Patients
por: Borsuk-De Moor, Agnieszka, et al.
Publicado: (2020)