Cargando…
Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression
SIMPLE SUMMARY: The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345401/ https://www.ncbi.nlm.nih.gov/pubmed/34359759 http://dx.doi.org/10.3390/cancers13153858 |
_version_ | 1783734618533396480 |
---|---|
author | Pliego Zamora, Adriana C. Ranasinghe, Hansini Lisle, Jessica E. Ng, Chun Ki Huang, Stephen Wadlow, Racheal Scott, Andrew M. Boyd, Andrew W. Slape, Christopher I. |
author_facet | Pliego Zamora, Adriana C. Ranasinghe, Hansini Lisle, Jessica E. Ng, Chun Ki Huang, Stephen Wadlow, Racheal Scott, Andrew M. Boyd, Andrew W. Slape, Christopher I. |
author_sort | Pliego Zamora, Adriana C. |
collection | PubMed |
description | SIMPLE SUMMARY: The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss of this engraftment ability (by deletion of the Lyl1 gene) did not result in any loss of leukemogenesis activity, indicating the activity of redundant oncogenic pathways in this model. Having observed an overexpression of the EphA3 protein in the NHD13 thymocytes, we hypothesized that this gene might be involved in a redundant leukaemogenic pathway. Deletion of EphA3 did not affect the engraftment ability of the thymocytes, but did reduce the incidence of T-ALL. We thus uncovered a distinct mechanism of leukaemogenesis, which we believe operates in parallel to that mediated by Lyl1. ABSTRACT: We recently characterised the NUP98-HOXD13 (NHD13) mouse as a model of T-cell pre-leukaemia, featuring thymocytes that can engraft in recipient animals and progress to T-cell acute lymphoblastic leukaemia (T-ALL). However, loss of this engraftment ability by deletion of Lyl1 did not result in any loss of leukemogenesis activity. In the present study, we observe that NHD13 thymocytes overexpress EPHA3, and we characterise thymocyte behaviour in NHD13 mice with deletion of EphA3, which show a markedly reduced incidence of T-ALL. Deletion of EphA3 from the NHD13 mice does not prevent the abnormal accumulation or transplantation ability of these thymocytes. However, upon transplantation, these cells are unable to block the normal progression of recipient wild type (WT) progenitor cells through the normal developmental pathway. This is in contrast to the EphA3(+/+) NHD13 thymocytes, which block the progression of incoming WT progenitors past the DN1 stage. Therefore, EphA3 is not critical for classical self-renewal, but is essential for mediating an interaction between the abnormally self-renewing cells and healthy progenitors—an interaction that results in a failure of the healthy cells to differentiate normally. We speculate that this may orchestrate a loss of healthy cell competition, which in itself has been demonstrated to be oncogenic, and that this may explain the decrease in T-ALL incidence in the absence of EphA3. We suggest that pre-leukaemic self-renewal in this model is a complex interplay of cell-intrinsic and -extrinsic factors, and that multiple redundant pathways to leukaemogenesis are active. |
format | Online Article Text |
id | pubmed-8345401 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83454012021-08-07 Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression Pliego Zamora, Adriana C. Ranasinghe, Hansini Lisle, Jessica E. Ng, Chun Ki Huang, Stephen Wadlow, Racheal Scott, Andrew M. Boyd, Andrew W. Slape, Christopher I. Cancers (Basel) Article SIMPLE SUMMARY: The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss of this engraftment ability (by deletion of the Lyl1 gene) did not result in any loss of leukemogenesis activity, indicating the activity of redundant oncogenic pathways in this model. Having observed an overexpression of the EphA3 protein in the NHD13 thymocytes, we hypothesized that this gene might be involved in a redundant leukaemogenic pathway. Deletion of EphA3 did not affect the engraftment ability of the thymocytes, but did reduce the incidence of T-ALL. We thus uncovered a distinct mechanism of leukaemogenesis, which we believe operates in parallel to that mediated by Lyl1. ABSTRACT: We recently characterised the NUP98-HOXD13 (NHD13) mouse as a model of T-cell pre-leukaemia, featuring thymocytes that can engraft in recipient animals and progress to T-cell acute lymphoblastic leukaemia (T-ALL). However, loss of this engraftment ability by deletion of Lyl1 did not result in any loss of leukemogenesis activity. In the present study, we observe that NHD13 thymocytes overexpress EPHA3, and we characterise thymocyte behaviour in NHD13 mice with deletion of EphA3, which show a markedly reduced incidence of T-ALL. Deletion of EphA3 from the NHD13 mice does not prevent the abnormal accumulation or transplantation ability of these thymocytes. However, upon transplantation, these cells are unable to block the normal progression of recipient wild type (WT) progenitor cells through the normal developmental pathway. This is in contrast to the EphA3(+/+) NHD13 thymocytes, which block the progression of incoming WT progenitors past the DN1 stage. Therefore, EphA3 is not critical for classical self-renewal, but is essential for mediating an interaction between the abnormally self-renewing cells and healthy progenitors—an interaction that results in a failure of the healthy cells to differentiate normally. We speculate that this may orchestrate a loss of healthy cell competition, which in itself has been demonstrated to be oncogenic, and that this may explain the decrease in T-ALL incidence in the absence of EphA3. We suggest that pre-leukaemic self-renewal in this model is a complex interplay of cell-intrinsic and -extrinsic factors, and that multiple redundant pathways to leukaemogenesis are active. MDPI 2021-07-31 /pmc/articles/PMC8345401/ /pubmed/34359759 http://dx.doi.org/10.3390/cancers13153858 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pliego Zamora, Adriana C. Ranasinghe, Hansini Lisle, Jessica E. Ng, Chun Ki Huang, Stephen Wadlow, Racheal Scott, Andrew M. Boyd, Andrew W. Slape, Christopher I. Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression |
title | Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression |
title_full | Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression |
title_fullStr | Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression |
title_full_unstemmed | Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression |
title_short | Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression |
title_sort | cell-extrinsic differentiation block mediated by epha3 in pre-leukaemic thymus contributes to disease progression |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345401/ https://www.ncbi.nlm.nih.gov/pubmed/34359759 http://dx.doi.org/10.3390/cancers13153858 |
work_keys_str_mv | AT pliegozamoraadrianac cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression AT ranasinghehansini cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression AT lislejessicae cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression AT ngchunki cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression AT huangstephen cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression AT wadlowracheal cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression AT scottandrewm cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression AT boydandreww cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression AT slapechristopheri cellextrinsicdifferentiationblockmediatedbyepha3inpreleukaemicthymuscontributestodiseaseprogression |