Cargando…
SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorizat...
Autores principales: | Li, Lei, Gao, Zhen, Wang, Yu-Tian, Zhang, Ming-Wen, Ni, Jian-Cheng, Zheng, Chun-Hou, Su, Yansen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345837/ https://www.ncbi.nlm.nih.gov/pubmed/34252084 http://dx.doi.org/10.1371/journal.pcbi.1009165 |
Ejemplares similares
-
MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA–Disease Association Prediction
por: Ni, Jiancheng, et al.
Publicado: (2022) -
SNFIMCMDA: Similarity Network Fusion and Inductive Matrix Completion for miRNA–Disease Association Prediction
por: Li, Lei, et al.
Publicado: (2021) -
Predicting drug-disease associations by using similarity constrained matrix factorization
por: Zhang, Wen, et al.
Publicado: (2018) -
Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics
por: Ambroise, Christophe, et al.
Publicado: (2019) -
Computational drug repositioning using similarity constrained weight regularization matrix factorization: A case of COVID‐19
por: Xu, Junlin, et al.
Publicado: (2022)