Cargando…

Analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench CD method

Based on the engineering practice of large cross-section highway tunnel, this paper reveals the space-time coordinated evolution law of the construction mechanical characteristics and deformation distribution of the support structure in the construction by half bench CD method through field test. At...

Descripción completa

Detalles Bibliográficos
Autor principal: Zhao, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345873/
https://www.ncbi.nlm.nih.gov/pubmed/34358266
http://dx.doi.org/10.1371/journal.pone.0255511
_version_ 1783734733039992832
author Zhao, Rui
author_facet Zhao, Rui
author_sort Zhao, Rui
collection PubMed
description Based on the engineering practice of large cross-section highway tunnel, this paper reveals the space-time coordinated evolution law of the construction mechanical characteristics and deformation distribution of the support structure in the construction by half bench CD method through field test. At the same time, the mechanical response calculation model of the supporting structure in the partial excavation is constructed, and the mechanical characteristics of the support structure in the partial excavation process are analyzed by above mechanical calculation model. Then, the mechanical and deformation distribution of the feet-reinforcement bolt in the steel frame—foot-reinforcement bolt combined support system is analyzed under different levels of surrounding rock load and different structural parameters of the feet-reinforcement bolt. The research results show that: (1) The internal force of the supporting structure changes most obviously during the excavation of Part Ⅰ, Part Ⅱ and Part Ⅲ, and the internal force of the support structure gradually tends to be stable after a slight increase in the excavation of Part Ⅳ and Part Ⅴ; (2) The horizontal deformation and vertical deformation of the support structure mainly occur in the excavation process of Part Ⅰ, Part Ⅱ and Part Ⅲ, and the excavation of Part Ⅳ and Ⅴ has little effect on the deformation response of the structure. The vertical displacement of the supporting structure is larger than the horizontal displacement, and the dynamic response of the temporary diaphragm structure during tunnel excavation is shrinkage-expansion-shrinkage-expansion; (3) The bending strain of each measuring point decreases with the increase of the distance from the loading point, and the bending strain of section 1 and section 2 is much larger than that of the other three sections; (4) With the increase of the angle, the section position with strain close to 0 gradually moves to the deeper position of the bolt, and the axial strain of each section on the bolt gradually changes from positive strain to negative strain.
format Online
Article
Text
id pubmed-8345873
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-83458732021-08-07 Analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench CD method Zhao, Rui PLoS One Research Article Based on the engineering practice of large cross-section highway tunnel, this paper reveals the space-time coordinated evolution law of the construction mechanical characteristics and deformation distribution of the support structure in the construction by half bench CD method through field test. At the same time, the mechanical response calculation model of the supporting structure in the partial excavation is constructed, and the mechanical characteristics of the support structure in the partial excavation process are analyzed by above mechanical calculation model. Then, the mechanical and deformation distribution of the feet-reinforcement bolt in the steel frame—foot-reinforcement bolt combined support system is analyzed under different levels of surrounding rock load and different structural parameters of the feet-reinforcement bolt. The research results show that: (1) The internal force of the supporting structure changes most obviously during the excavation of Part Ⅰ, Part Ⅱ and Part Ⅲ, and the internal force of the support structure gradually tends to be stable after a slight increase in the excavation of Part Ⅳ and Part Ⅴ; (2) The horizontal deformation and vertical deformation of the support structure mainly occur in the excavation process of Part Ⅰ, Part Ⅱ and Part Ⅲ, and the excavation of Part Ⅳ and Ⅴ has little effect on the deformation response of the structure. The vertical displacement of the supporting structure is larger than the horizontal displacement, and the dynamic response of the temporary diaphragm structure during tunnel excavation is shrinkage-expansion-shrinkage-expansion; (3) The bending strain of each measuring point decreases with the increase of the distance from the loading point, and the bending strain of section 1 and section 2 is much larger than that of the other three sections; (4) With the increase of the angle, the section position with strain close to 0 gradually moves to the deeper position of the bolt, and the axial strain of each section on the bolt gradually changes from positive strain to negative strain. Public Library of Science 2021-08-06 /pmc/articles/PMC8345873/ /pubmed/34358266 http://dx.doi.org/10.1371/journal.pone.0255511 Text en © 2021 Rui Zhao https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Zhao, Rui
Analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench CD method
title Analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench CD method
title_full Analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench CD method
title_fullStr Analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench CD method
title_full_unstemmed Analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench CD method
title_short Analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench CD method
title_sort analysis for bearing performance and construction mechanical behavior of supporting structure for the large cross-section tunnel by half bench cd method
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345873/
https://www.ncbi.nlm.nih.gov/pubmed/34358266
http://dx.doi.org/10.1371/journal.pone.0255511
work_keys_str_mv AT zhaorui analysisforbearingperformanceandconstructionmechanicalbehaviorofsupportingstructureforthelargecrosssectiontunnelbyhalfbenchcdmethod