Cargando…
Improving stock trading decisions based on pattern recognition using machine learning technology
PRML, a novel candlestick pattern recognition model using machine learning methods, is proposed to improve stock trading decisions. Four popular machine learning methods and 11 different features types are applied to all possible combinations of daily patterns to start the pattern recognition schedu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345893/ https://www.ncbi.nlm.nih.gov/pubmed/34358269 http://dx.doi.org/10.1371/journal.pone.0255558 |
_version_ | 1783734738101469184 |
---|---|
author | Lin, Yaohu Liu, Shancun Yang, Haijun Wu, Harris Jiang, Bingbing |
author_facet | Lin, Yaohu Liu, Shancun Yang, Haijun Wu, Harris Jiang, Bingbing |
author_sort | Lin, Yaohu |
collection | PubMed |
description | PRML, a novel candlestick pattern recognition model using machine learning methods, is proposed to improve stock trading decisions. Four popular machine learning methods and 11 different features types are applied to all possible combinations of daily patterns to start the pattern recognition schedule. Different time windows from one to ten days are used to detect the prediction effect at different periods. An investment strategy is constructed according to the identified candlestick patterns and suitable time window. We deploy PRML for the forecast of all Chinese market stocks from Jan 1, 2000 until Oct 30, 2020. Among them, the data from Jan 1, 2000 to Dec 31, 2014 is used as the training data set, and the data set from Jan 1, 2015 to Oct 30, 2020 is used to verify the forecasting effect. Empirical results show that the two-day candlestick patterns after filtering have the best prediction effect when forecasting one day ahead; these patterns obtain an average annual return, an annual Sharpe ratio, and an information ratio as high as 36.73%, 0.81, and 2.37, respectively. After screening, three-day candlestick patterns also present a beneficial effect when forecasting one day ahead in that these patterns show stable characteristics. Two other popular machine learning methods, multilayer perceptron network and long short-term memory neural networks, are applied to the pattern recognition framework to evaluate the dependency of the prediction model. A transaction cost of 0.2% is considered on the two-day patterns predicting one day ahead, thus confirming the profitability. Empirical results show that applying different machine learning methods to two-day and three-day patterns for one-day-ahead forecasts can be profitable. |
format | Online Article Text |
id | pubmed-8345893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-83458932021-08-07 Improving stock trading decisions based on pattern recognition using machine learning technology Lin, Yaohu Liu, Shancun Yang, Haijun Wu, Harris Jiang, Bingbing PLoS One Research Article PRML, a novel candlestick pattern recognition model using machine learning methods, is proposed to improve stock trading decisions. Four popular machine learning methods and 11 different features types are applied to all possible combinations of daily patterns to start the pattern recognition schedule. Different time windows from one to ten days are used to detect the prediction effect at different periods. An investment strategy is constructed according to the identified candlestick patterns and suitable time window. We deploy PRML for the forecast of all Chinese market stocks from Jan 1, 2000 until Oct 30, 2020. Among them, the data from Jan 1, 2000 to Dec 31, 2014 is used as the training data set, and the data set from Jan 1, 2015 to Oct 30, 2020 is used to verify the forecasting effect. Empirical results show that the two-day candlestick patterns after filtering have the best prediction effect when forecasting one day ahead; these patterns obtain an average annual return, an annual Sharpe ratio, and an information ratio as high as 36.73%, 0.81, and 2.37, respectively. After screening, three-day candlestick patterns also present a beneficial effect when forecasting one day ahead in that these patterns show stable characteristics. Two other popular machine learning methods, multilayer perceptron network and long short-term memory neural networks, are applied to the pattern recognition framework to evaluate the dependency of the prediction model. A transaction cost of 0.2% is considered on the two-day patterns predicting one day ahead, thus confirming the profitability. Empirical results show that applying different machine learning methods to two-day and three-day patterns for one-day-ahead forecasts can be profitable. Public Library of Science 2021-08-06 /pmc/articles/PMC8345893/ /pubmed/34358269 http://dx.doi.org/10.1371/journal.pone.0255558 Text en © 2021 Lin et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lin, Yaohu Liu, Shancun Yang, Haijun Wu, Harris Jiang, Bingbing Improving stock trading decisions based on pattern recognition using machine learning technology |
title | Improving stock trading decisions based on pattern recognition using machine learning technology |
title_full | Improving stock trading decisions based on pattern recognition using machine learning technology |
title_fullStr | Improving stock trading decisions based on pattern recognition using machine learning technology |
title_full_unstemmed | Improving stock trading decisions based on pattern recognition using machine learning technology |
title_short | Improving stock trading decisions based on pattern recognition using machine learning technology |
title_sort | improving stock trading decisions based on pattern recognition using machine learning technology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345893/ https://www.ncbi.nlm.nih.gov/pubmed/34358269 http://dx.doi.org/10.1371/journal.pone.0255558 |
work_keys_str_mv | AT linyaohu improvingstocktradingdecisionsbasedonpatternrecognitionusingmachinelearningtechnology AT liushancun improvingstocktradingdecisionsbasedonpatternrecognitionusingmachinelearningtechnology AT yanghaijun improvingstocktradingdecisionsbasedonpatternrecognitionusingmachinelearningtechnology AT wuharris improvingstocktradingdecisionsbasedonpatternrecognitionusingmachinelearningtechnology AT jiangbingbing improvingstocktradingdecisionsbasedonpatternrecognitionusingmachinelearningtechnology |