Cargando…
Improving stock trading decisions based on pattern recognition using machine learning technology
PRML, a novel candlestick pattern recognition model using machine learning methods, is proposed to improve stock trading decisions. Four popular machine learning methods and 11 different features types are applied to all possible combinations of daily patterns to start the pattern recognition schedu...
Autores principales: | Lin, Yaohu, Liu, Shancun, Yang, Haijun, Wu, Harris, Jiang, Bingbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345893/ https://www.ncbi.nlm.nih.gov/pubmed/34358269 http://dx.doi.org/10.1371/journal.pone.0255558 |
Ejemplares similares
-
Is It Possible to Earn Abnormal Return in an Inefficient Market? An Approach Based on Machine Learning in Stock Trading
por: Khoa, Bui Thanh, et al.
Publicado: (2021) -
The Geometric Phase of Stock Trading
por: Altafini, Claudio
Publicado: (2016) -
Profitable day and swing trading: using price/volume surges and pattern recognition to catch big moves in the stock market
por: Boxer, Harry
Publicado: (2014) -
Pattern recognition and machine learning
por: Bishop, Christopher M
Publicado: (2006) -
Pattern recognition & machine learning
por: Anzai, Y
Publicado: (1992)