Cargando…

Crop Production and Agricultural Carbon Emissions: Relationship Diagnosis and Decomposition Analysis

Modern agriculture contributes significantly to greenhouse gas emissions, and agriculture has become the second biggest source of carbon emissions in China. In this context, it is necessary for China to study the nexus of agricultural economic growth and carbon emissions. Taking Jilin province as an...

Descripción completa

Detalles Bibliográficos
Autores principales: Sui, Jianli, Lv, Wenqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346119/
https://www.ncbi.nlm.nih.gov/pubmed/34360511
http://dx.doi.org/10.3390/ijerph18158219
Descripción
Sumario:Modern agriculture contributes significantly to greenhouse gas emissions, and agriculture has become the second biggest source of carbon emissions in China. In this context, it is necessary for China to study the nexus of agricultural economic growth and carbon emissions. Taking Jilin province as an example, this paper applied the environmental Kuznets curve (EKC) hypothesis and a decoupling analysis to examine the relationship between crop production and agricultural carbon emissions during 2000–2018, and it further provided a decomposition analysis of the changes in agricultural carbon emissions using the log mean Divisia index (LMDI) method. The results were as follows: (1) Based on the results of CO(2) EKC estimation, an N-shaped EKC was found; in particular, the upward trend in agricultural carbon emissions has not changed recently. (2) According to the results of the decoupling analysis, expansive coupling occurred for 9 years, which was followed by weak decoupling for 5 years, and strong decoupling and strong coupling occurred for 2 years each. There was no stable evolutionary path from coupling to decoupling, and this has remained true recently. (3) We used the LMDI method to decompose the driving factors of agricultural carbon emissions into four factors: the agricultural carbon emission intensity effect, structure effect, economic effect, and labor force effect. From a policymaking perspective, we integrated the results of both the EKC and the decoupling analysis and conducted a detailed decomposition analysis, focusing on several key time points. Agricultural economic growth was found to have played a significant role on many occasions in the increase in agricultural carbon emissions, while agricultural carbon emission intensity was important to the decline in agricultural carbon emissions. Specifically, the four factors’ driving direction in the context of agricultural carbon emissions was not stable. We also found that the change in agricultural carbon emissions was affected more by economic policy than by environmental policy. Finally, we put forward policy suggestions for low-carbon agricultural development in Jilin province.