Cargando…
Fe-based superconducting transition temperature modeling by machine learning: A computer science method
Searching for new high temperature superconductors has long been a key research issue. Fe-based superconductors attract researchers’ attention due to their high transition temperature, strong irreversibility field, and excellent crystallographic symmetry. By using doping methods and dopant levels, d...
Autor principal: | Hu, Zhiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346257/ https://www.ncbi.nlm.nih.gov/pubmed/34358265 http://dx.doi.org/10.1371/journal.pone.0255823 |
Ejemplares similares
-
Cuprate superconducting materials above liquid nitrogen temperature from machine learning
por: Wang, Yuxue, et al.
Publicado: (2023) -
High temperature superconductivity at FeSe/LaFeO(3) interface
por: Song, Yuanhe, et al.
Publicado: (2021) -
Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO(3) interface
por: Song, Q., et al.
Publicado: (2019) -
Phase transition approach to high temperature superconductivity
por: Schneider, T, et al.
Publicado: (1998) -
Upper limit of the transition temperature of superconducting materials
por: Liu, Yang, et al.
Publicado: (2022)