Cargando…

Maps, trends, and temperature sensitivities—phenological information from and for decreasing numbers of volunteer observers

Phenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Ye, Härer, Stefan, Ottenheym, Tobias, Misra, Gourav, Lüpke, Alissa, Estrella, Nicole, Menzel, Annette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346396/
https://www.ncbi.nlm.nih.gov/pubmed/33694098
http://dx.doi.org/10.1007/s00484-021-02110-3
Descripción
Sumario:Phenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from map interpolation. We studied uncertainties in interpolated maps from decreasing phenological records, by comparing long-term trends based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolated maps in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncertainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year(−1) for spring and summer, while late autumn and winter showed a delay of around 0.1 days year(−1). Throughout the year, temperature sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological patterns across Bavaria and their links to climate change–induced temperature changes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00484-021-02110-3.