Cargando…
Quasiadiabatic electron transport in room temperature nanoelectronic devices induced by hot-phonon bottleneck
Since the invention of transistors, the flow of electrons has become controllable in solid-state electronics. The flow of energy, however, remains elusive, and energy is readily dissipated to lattice via electron-phonon interactions. Hence, minimizing the energy dissipation has long been sought by e...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346506/ https://www.ncbi.nlm.nih.gov/pubmed/34362908 http://dx.doi.org/10.1038/s41467-021-25094-5 |
Sumario: | Since the invention of transistors, the flow of electrons has become controllable in solid-state electronics. The flow of energy, however, remains elusive, and energy is readily dissipated to lattice via electron-phonon interactions. Hence, minimizing the energy dissipation has long been sought by eliminating phonon-emission process. Here, we report a different scenario for facilitating energy transmission at room temperature that electrons exert diffusive but quasiadiabatic transport, free from substantial energy loss. Direct nanothermometric mapping of electrons and lattice in current-carrying GaAs/AlGaAs devices exhibit remarkable discrepancies, indicating unexpected thermal isolation between the two subsystems. This surprising effect arises from the overpopulated hot longitudinal-optical (LO) phonons generated through frequent emission by hot electrons, which induce equally frequent LO-phonon reabsorption (“hot-phonon bottleneck”) cancelling the net energy loss. Our work sheds light on energy manipulation in nanoelectronics and power-electronics and provides important hints to energy-harvesting in optoelectronics (such as hot-carrier solar-cells). |
---|