Cargando…

Aflatoxins are natural scavengers of reactive oxygen species

The role of aflatoxins (AFs) in the biology of producing strains, Aspergillus sect. Flavi, is still a matter of debate. Over recent years, research has pointed to how environmental factors altering the redox balance in the fungal cell can switch on the synthesis of AF. Notably, it has been known for...

Descripción completa

Detalles Bibliográficos
Autores principales: Finotti, E., Parroni, A., Zaccaria, M., Domin, M., Momeni, B., Fanelli, C., Reverberi, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346536/
https://www.ncbi.nlm.nih.gov/pubmed/34362972
http://dx.doi.org/10.1038/s41598-021-95325-8
Descripción
Sumario:The role of aflatoxins (AFs) in the biology of producing strains, Aspergillus sect. Flavi, is still a matter of debate. Over recent years, research has pointed to how environmental factors altering the redox balance in the fungal cell can switch on the synthesis of AF. Notably, it has been known for decades that oxidants promote AF synthesis. More recent evidence has indicated that AF synthesis is controlled at the transcriptional level: reactive species that accumulate in fungal cells in the stationary growth phase modulate the expression of aflR, the main regulator of AF synthesis—through the oxidative stress related transcription factor AP-1. Thus, AFs are largely synthesized and secreted when (i) the fungus has exploited most nutritional resources; (ii) the hyphal density is high; and (iii) reactive species are abundant in the environment. In this study, we show that AFs efficiently scavenge peroxides and extend the lifespan of E. coli grown under oxidative stress conditions. We hypothesize a novel role for AF as an antioxidant and suggest its biological purpose is to extend the lifespan of AFs-producing strains of Aspergillus sect. Flavi under highly oxidizing conditions such as when substrate resources are depleted, or within a host.