Cargando…
Support vector machine and deep-learning object detection for localisation of hard exudates
Hard exudates are one of the main clinical findings in the retinal images of patients with diabetic retinopathy. Detecting them early significantly impacts the treatment of underlying diseases; therefore, there is a need for automated systems with high reliability. We propose a novel method for iden...
Autores principales: | Kurilová, Veronika, Goga, Jozef, Oravec, Miloš, Pavlovičová, Jarmila, Kajan, Slavomír |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346563/ https://www.ncbi.nlm.nih.gov/pubmed/34362989 http://dx.doi.org/10.1038/s41598-021-95519-0 |
Ejemplares similares
-
Structure and Base Analysis of Receptive Field Neural Networks in a Character Recognition Task
por: Goga, Jozef, et al.
Publicado: (2022) -
On the Speech Properties and Feature Extraction Methods in Speech Emotion Recognition
por: Kacur, Juraj, et al.
Publicado: (2021) -
Frequency, Time, Representation and Modeling Aspects for Major Speech and Audio Processing Applications
por: Kacur, Juraj, et al.
Publicado: (2022) -
Employing Ray-Tracing and Least-Squares Support Vector Machines for Localisation †
por: Chitambira, Benny, et al.
Publicado: (2018) -
Retinal Sensitivity over Hard Exudates in Diabetic Retinopathy
por: Raman, Rajiv, et al.
Publicado: (2015)