Cargando…
Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in...
Autores principales: | Garcia-Uceda, Antonio, Selvan, Raghavendra, Saghir, Zaigham, Tiddens, Harm A. W. M., de Bruijne, Marleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346579/ https://www.ncbi.nlm.nih.gov/pubmed/34362949 http://dx.doi.org/10.1038/s41598-021-95364-1 |
Ejemplares similares
-
Creating a training set for artificial intelligence from initial segmentations of airways
por: Dudurych, Ivan, et al.
Publicado: (2021) -
Crowdsourcing airway annotations in chest computed tomography images
por: Cheplygina, Veronika, et al.
Publicado: (2021) -
Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts
por: Sedghi Gamechi, Zahra, et al.
Publicado: (2021) -
Airway tapering: an objective image biomarker for bronchiectasis
por: Kuo, Wieying, et al.
Publicado: (2020) -
Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: Objective airway-artery quantification
por: Kuo, Wieying, et al.
Publicado: (2017)