Cargando…
Deep learning for the standardized classification of Ki-67 in vulva carcinoma: A feasibility study
BACKGROUND: The aim of this study is to demonstrate the feasibility of automatic classification of Ki-67 histological immunostainings in patients with squamous cell carcinoma of the vulva using a deep convolutional neural network (dCNN). MATERIAL AND METHODS: For evaluation of the dCNN, we used 55 w...
Autores principales: | Choschzick, Matthias, Alyahiaoui, Mariam, Ciritsis, Alexander, Rossi, Cristina, Gut, André, Hejduk, Patryk, Boss, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346648/ https://www.ncbi.nlm.nih.gov/pubmed/34386617 http://dx.doi.org/10.1016/j.heliyon.2021.e07577 |
Ejemplares similares
-
Applied Machine Learning in Spiral Breast-CT: Can We Train a Deep Convolutional Neural Network for Automatic, Standardized and Observer Independent Classification of Breast Density?
por: Landsmann, Anna, et al.
Publicado: (2022) -
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network
por: Hejduk, Patryk, et al.
Publicado: (2022) -
BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network
por: Sabani, Albin, et al.
Publicado: (2022) -
Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach
por: Borkowski, Karol, et al.
Publicado: (2020) -
Detecting Abnormal Axillary Lymph Nodes on Mammograms Using a Deep Convolutional Neural Network
por: Abel, Frederik, et al.
Publicado: (2022)