Cargando…
Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study
Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346685/ https://www.ncbi.nlm.nih.gov/pubmed/34339947 http://dx.doi.org/10.1016/j.nicl.2021.102765 |
_version_ | 1783734931101319168 |
---|---|
author | Gleichgerrcht, Ezequiel Munsell, Brent C. Alhusaini, Saud Alvim, Marina K.M. Bargalló, Núria Bender, Benjamin Bernasconi, Andrea Bernasconi, Neda Bernhardt, Boris Blackmon, Karen Caligiuri, Maria Eugenia Cendes, Fernando Concha, Luis Desmond, Patricia M. Devinsky, Orrin Doherty, Colin P. Domin, Martin Duncan, John S. Focke, Niels K. Gambardella, Antonio Gong, Bo Guerrini, Renzo Hatton, Sean N. Kälviäinen, Reetta Keller, Simon S. Kochunov, Peter Kotikalapudi, Raviteja Kreilkamp, Barbara A.K. Labate, Angelo Langner, Soenke Larivière, Sara Lenge, Matteo Lui, Elaine Martin, Pascal Mascalchi, Mario Meletti, Stefano O'Brien, Terence J. Pardoe, Heath R. Pariente, Jose C. Xian Rao, Jun Richardson, Mark P. Rodríguez-Cruces, Raúl Rüber, Theodor Sinclair, Ben Soltanian-Zadeh, Hamid Stein, Dan J. Striano, Pasquale Taylor, Peter N. Thomas, Rhys H. Elisabetta Vaudano, Anna Vivash, Lucy von Podewills, Felix Vos, Sjoerd B. Weber, Bernd Yao, Yi Lin Yasuda, Clarissa Zhang, Junsong Thompson, Paul M. Sisodiya, Sanjay M. McDonald, Carrie R. Bonilha, Leonardo |
author_facet | Gleichgerrcht, Ezequiel Munsell, Brent C. Alhusaini, Saud Alvim, Marina K.M. Bargalló, Núria Bender, Benjamin Bernasconi, Andrea Bernasconi, Neda Bernhardt, Boris Blackmon, Karen Caligiuri, Maria Eugenia Cendes, Fernando Concha, Luis Desmond, Patricia M. Devinsky, Orrin Doherty, Colin P. Domin, Martin Duncan, John S. Focke, Niels K. Gambardella, Antonio Gong, Bo Guerrini, Renzo Hatton, Sean N. Kälviäinen, Reetta Keller, Simon S. Kochunov, Peter Kotikalapudi, Raviteja Kreilkamp, Barbara A.K. Labate, Angelo Langner, Soenke Larivière, Sara Lenge, Matteo Lui, Elaine Martin, Pascal Mascalchi, Mario Meletti, Stefano O'Brien, Terence J. Pardoe, Heath R. Pariente, Jose C. Xian Rao, Jun Richardson, Mark P. Rodríguez-Cruces, Raúl Rüber, Theodor Sinclair, Ben Soltanian-Zadeh, Hamid Stein, Dan J. Striano, Pasquale Taylor, Peter N. Thomas, Rhys H. Elisabetta Vaudano, Anna Vivash, Lucy von Podewills, Felix Vos, Sjoerd B. Weber, Bernd Yao, Yi Lin Yasuda, Clarissa Zhang, Junsong Thompson, Paul M. Sisodiya, Sanjay M. McDonald, Carrie R. Bonilha, Leonardo |
author_sort | Gleichgerrcht, Ezequiel |
collection | PubMed |
description | Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest (ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with (“lesional”) and without (“non-lesional”) radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center) ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68–75%) compared to models to lateralize the side of TLE (56–73%, except structural-based) based on diffusion data with the opposite pattern seen for structural data (67–75% to diagnose vs. 83% to lateralize). In other aspects, structural and diffusion-based models showed similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68–76%) than models that stratified non-lesional patients (53–62%). Overall, SV and DL models performed similarly with several instances in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the implications for future applications of machine learning and artificial intelligence in epilepsy care. |
format | Online Article Text |
id | pubmed-8346685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-83466852021-08-11 Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study Gleichgerrcht, Ezequiel Munsell, Brent C. Alhusaini, Saud Alvim, Marina K.M. Bargalló, Núria Bender, Benjamin Bernasconi, Andrea Bernasconi, Neda Bernhardt, Boris Blackmon, Karen Caligiuri, Maria Eugenia Cendes, Fernando Concha, Luis Desmond, Patricia M. Devinsky, Orrin Doherty, Colin P. Domin, Martin Duncan, John S. Focke, Niels K. Gambardella, Antonio Gong, Bo Guerrini, Renzo Hatton, Sean N. Kälviäinen, Reetta Keller, Simon S. Kochunov, Peter Kotikalapudi, Raviteja Kreilkamp, Barbara A.K. Labate, Angelo Langner, Soenke Larivière, Sara Lenge, Matteo Lui, Elaine Martin, Pascal Mascalchi, Mario Meletti, Stefano O'Brien, Terence J. Pardoe, Heath R. Pariente, Jose C. Xian Rao, Jun Richardson, Mark P. Rodríguez-Cruces, Raúl Rüber, Theodor Sinclair, Ben Soltanian-Zadeh, Hamid Stein, Dan J. Striano, Pasquale Taylor, Peter N. Thomas, Rhys H. Elisabetta Vaudano, Anna Vivash, Lucy von Podewills, Felix Vos, Sjoerd B. Weber, Bernd Yao, Yi Lin Yasuda, Clarissa Zhang, Junsong Thompson, Paul M. Sisodiya, Sanjay M. McDonald, Carrie R. Bonilha, Leonardo Neuroimage Clin Regular Article Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest (ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with (“lesional”) and without (“non-lesional”) radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center) ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68–75%) compared to models to lateralize the side of TLE (56–73%, except structural-based) based on diffusion data with the opposite pattern seen for structural data (67–75% to diagnose vs. 83% to lateralize). In other aspects, structural and diffusion-based models showed similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68–76%) than models that stratified non-lesional patients (53–62%). Overall, SV and DL models performed similarly with several instances in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the implications for future applications of machine learning and artificial intelligence in epilepsy care. Elsevier 2021-07-24 /pmc/articles/PMC8346685/ /pubmed/34339947 http://dx.doi.org/10.1016/j.nicl.2021.102765 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Regular Article Gleichgerrcht, Ezequiel Munsell, Brent C. Alhusaini, Saud Alvim, Marina K.M. Bargalló, Núria Bender, Benjamin Bernasconi, Andrea Bernasconi, Neda Bernhardt, Boris Blackmon, Karen Caligiuri, Maria Eugenia Cendes, Fernando Concha, Luis Desmond, Patricia M. Devinsky, Orrin Doherty, Colin P. Domin, Martin Duncan, John S. Focke, Niels K. Gambardella, Antonio Gong, Bo Guerrini, Renzo Hatton, Sean N. Kälviäinen, Reetta Keller, Simon S. Kochunov, Peter Kotikalapudi, Raviteja Kreilkamp, Barbara A.K. Labate, Angelo Langner, Soenke Larivière, Sara Lenge, Matteo Lui, Elaine Martin, Pascal Mascalchi, Mario Meletti, Stefano O'Brien, Terence J. Pardoe, Heath R. Pariente, Jose C. Xian Rao, Jun Richardson, Mark P. Rodríguez-Cruces, Raúl Rüber, Theodor Sinclair, Ben Soltanian-Zadeh, Hamid Stein, Dan J. Striano, Pasquale Taylor, Peter N. Thomas, Rhys H. Elisabetta Vaudano, Anna Vivash, Lucy von Podewills, Felix Vos, Sjoerd B. Weber, Bernd Yao, Yi Lin Yasuda, Clarissa Zhang, Junsong Thompson, Paul M. Sisodiya, Sanjay M. McDonald, Carrie R. Bonilha, Leonardo Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study |
title | Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study |
title_full | Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study |
title_fullStr | Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study |
title_full_unstemmed | Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study |
title_short | Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study |
title_sort | artificial intelligence for classification of temporal lobe epilepsy with roi-level mri data: a worldwide enigma-epilepsy study |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346685/ https://www.ncbi.nlm.nih.gov/pubmed/34339947 http://dx.doi.org/10.1016/j.nicl.2021.102765 |
work_keys_str_mv | AT gleichgerrchtezequiel artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT munsellbrentc artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT alhusainisaud artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT alvimmarinakm artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT bargallonuria artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT benderbenjamin artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT bernasconiandrea artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT bernasconineda artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT bernhardtboris artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT blackmonkaren artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT caligiurimariaeugenia artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT cendesfernando artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT conchaluis artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT desmondpatriciam artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT devinskyorrin artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT dohertycolinp artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT dominmartin artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT duncanjohns artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT fockenielsk artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT gambardellaantonio artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT gongbo artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT guerrinirenzo artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT hattonseann artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT kalviainenreetta artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT kellersimons artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT kochunovpeter artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT kotikalapudiraviteja artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT kreilkampbarbaraak artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT labateangelo artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT langnersoenke artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT larivieresara artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT lengematteo artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT luielaine artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT martinpascal artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT mascalchimario artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT melettistefano artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT obrienterencej artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT pardoeheathr artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT parientejosec artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT xianraojun artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT richardsonmarkp artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT rodriguezcrucesraul artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT rubertheodor artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT sinclairben artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT soltanianzadehhamid artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT steindanj artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT strianopasquale artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT taylorpetern artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT thomasrhysh artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT elisabettavaudanoanna artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT vivashlucy artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT vonpodewillsfelix artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT vossjoerdb artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT weberbernd artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT yaoyi artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT linyasudaclarissa artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT zhangjunsong artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT thompsonpaulm artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT sisodiyasanjaym artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT mcdonaldcarrier artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT bonilhaleonardo artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy AT artificialintelligenceforclassificationoftemporallobeepilepsywithroilevelmridataaworldwideenigmaepilepsystudy |