Cargando…
Automated multiclass tissue segmentation of clinical brain MRIs with lesions
Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs t...
Autores principales: | Weiss, David A., Saluja, Rachit, Xie, Long, Gee, James C., Sugrue, Leo P, Pradhan, Abhijeet, Nick Bryan, R., Rauschecker, Andreas M., Rudie, Jeffrey D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346689/ https://www.ncbi.nlm.nih.gov/pubmed/34333270 http://dx.doi.org/10.1016/j.nicl.2021.102769 |
Ejemplares similares
-
Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the BraTS Data Using a 3D Convolutional Neural Network
por: Rudie, Jeffrey D., et al.
Publicado: (2019) -
Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs
por: Huang, Xiaona, et al.
Publicado: (2023) -
3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies
por: Wahlig, Stephen G., et al.
Publicado: (2023) -
SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder
por: Atlason, Hans E., et al.
Publicado: (2019) -
Automatic breast lesion segmentation in phase preserved DCE-MRIs
por: Pandey, Dinesh, et al.
Publicado: (2022)