Cargando…
Local Style Preservation in Improved GAN-Driven Synthetic Image Generation for Endoscopic Tool Segmentation
Accurate semantic image segmentation from medical imaging can enable intelligent vision-based assistance in robot-assisted minimally invasive surgery. The human body and surgical procedures are highly dynamic. While machine-vision presents a promising approach, sufficiently large training image sets...
Autores principales: | Su, Yun-Hsuan, Jiang, Wenfan, Chitrakar, Digesh, Huang, Kevin, Peng, Haonan, Hannaford, Blake |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346972/ https://www.ncbi.nlm.nih.gov/pubmed/34372398 http://dx.doi.org/10.3390/s21155163 |
Ejemplares similares
-
On the generation of realistic synthetic petrographic datasets using a style-based GAN
por: Ferreira, Ivan, et al.
Publicado: (2022) -
SinGAN-Seg: Synthetic training data generation for medical image segmentation
por: Thambawita, Vajira, et al.
Publicado: (2022) -
GAN-based synthetic brain PET image generation
por: Islam, Jyoti, et al.
Publicado: (2020) -
Brain tumor image generation using an aggregation of GAN models with style transfer
por: Mukherkjee, Debadyuti, et al.
Publicado: (2022) -
SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation
por: Hazra, Debapriya, et al.
Publicado: (2020)