Cargando…

Precise Controlled Target Molecule Release through Light-Triggered Charge Reversal Bridged Polysilsesquioxane Nanoparticles

Precise control of target molecule release time, site, and dosage remains a challenge in controlled release systems. We employed a photoresponsive molecule release system via light-triggered charge reversal nanoparticles to achieve a triggered, stepwise, and precise controlled release platform. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xin, Zhang, Mengmeng, Wu, Mingyue, Yang, Linchuan, Liu, Rui, Zhang, Rui, Zhao, Tongtong, Song, Ci, Liu, Gang, Zhu, Qingzeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346980/
https://www.ncbi.nlm.nih.gov/pubmed/34371994
http://dx.doi.org/10.3390/polym13152392
Descripción
Sumario:Precise control of target molecule release time, site, and dosage remains a challenge in controlled release systems. We employed a photoresponsive molecule release system via light-triggered charge reversal nanoparticles to achieve a triggered, stepwise, and precise controlled release platform. This release system was based on photocleavage-bridged polysilsesquioxane nanoparticles which acted as nanocarriers of doxorubicin loaded on the surface via electrostatic interaction. The nanoparticles could reverse into positive charges triggered by 254 nm light irradiation due to the photocleavage of the o-nitrobenzyl bridged segment. The charge reversal property of the nanoparticles could release loaded molecules. Doxorubicin was selected as a positively charged model molecule. The as-prepared nanoparticles with an average size of 124 nm had an acceptable doxorubicin loading content up to 12.8%. The surface charge of the nanoparticles could rapidly reverse from negative (−28.20 mV) to positive (+18.9 mV) upon light irradiation for only 10 min. In vitro release experiments showed a cumulative release up to 96% with continuously enhancing irradiation intensity. By regulating irradiation parameters, precisely controlled drug release was carried out. The typical “stepped” profile could be accurately controlled in an on/off irradiation mode. This approach provides an ideal light-triggered molecule release system for location, timing, and dosage. This updated controlled release system, triggered by near-infrared or infrared light, will have greater potential applications in biomedical technology.