Cargando…
Predicting Pressure Sensitivity to Luminophore Content and Paint Thickness of Pressure-Sensitive Paint Using Artificial Neural Network
An artificial neural network (ANN) was constructed and trained for predicting pressure sensitivity using an experimental dataset consisting of luminophore content and paint thickness as chemical and physical inputs. A data augmentation technique was used to increase the number of data points based o...
Autores principales: | Hasegawa, Mitsugu, Kurihara, Daiki, Egami, Yasuhiro, Sakaue, Hirotaka, Jemcov, Aleksandar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347181/ https://www.ncbi.nlm.nih.gov/pubmed/34372426 http://dx.doi.org/10.3390/s21155188 |
Ejemplares similares
-
Luminophore Application Study of Polymer-Ceramic Pressure-Sensitive Paint
por: Sakaue, Hirotaka, et al.
Publicado: (2013) -
Optimization of Anodized-Aluminum Pressure-Sensitive Paint by Controlling Luminophore Concentration
por: Sakaue, Hirotaka, et al.
Publicado: (2010) -
Photostability Enhancement of Dual-Luminophore Pressure-Sensitive Paint by Adding Antioxidants
por: Uchida, Kazuki, et al.
Publicado: (2022) -
Dynamic and Steady Characteristics of Polymer-Ceramic Pressure-Sensitive Paint with Variation in Layer Thickness
por: Hayashi, Tatsunori, et al.
Publicado: (2017) -
Characterization and Optimization of Polymer-Ceramic Pressure-Sensitive Paint by Controlling Polymer Content
por: Sakaue, Hirotaka, et al.
Publicado: (2011)