Cargando…
Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires
Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based...
Autores principales: | Collazos-Huertas, Diego Fabian, Velasquez-Martinez, Luisa Fernanda, Perez-Nastar, Hernan Dario, Alvarez-Meza, Andres Marino, Castellanos-Dominguez, German |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347227/ https://www.ncbi.nlm.nih.gov/pubmed/34372338 http://dx.doi.org/10.3390/s21155105 |
Ejemplares similares
-
Enhanced Data Representation by Kernel Metric Learning for Dementia Diagnosis
por: Cárdenas-Peña, David, et al.
Publicado: (2017) -
Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis
por: Cárdenas-Peña, David, et al.
Publicado: (2016) -
Affective Neural Responses Sonified through Labeled Correlation Alignment
por: Álvarez-Meza, Andrés Marino, et al.
Publicado: (2023) -
Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity
por: Collazos-Huertas, Diego Fabian, et al.
Publicado: (2023) -
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
por: García-Murillo, Daniel Guillermo, et al.
Publicado: (2023)