Cargando…
Deep Learning for Efficient and Optimal Motion Planning for AUVs with Disturbances
We use the recent advances in Deep Learning to solve an underwater motion planning problem by making use of optimal control tools—namely, we propose using the Deep Galerkin Method (DGM) to approximate the Hamilton–Jacobi–Bellman PDE that can be used to solve continuous time and state optimal control...
Autores principales: | Parras, Juan, Apellániz, Patricia A., Zazo, Santiago |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347268/ https://www.ncbi.nlm.nih.gov/pubmed/34372249 http://dx.doi.org/10.3390/s21155011 |
Ejemplares similares
-
Bilevel Optimization-Based Time-Optimal Path Planning for AUVs
por: Yao, Xuliang, et al.
Publicado: (2018) -
Deep Reinforcement Learning for Attacking Wireless Sensor Networks
por: Parras, Juan, et al.
Publicado: (2021) -
Efficient Asynchronous Federated Learning for AUV Swarm
por: Meng, Zezhao, et al.
Publicado: (2022) -
End-to-End AUV Motion Planning Method Based on Soft Actor-Critic
por: Yu, Xin, et al.
Publicado: (2021) -
AUV Path Planning Considering Ocean Current Disturbance Based on Cloud Desktop Technology
por: Hu, Siyuan, et al.
Publicado: (2023)