Cargando…
Estimation of Stroke Volume Variance from Arterial Blood Pressure: Using a 1-D Convolutional Neural Network
Background: We aimed to create a novel model using a deep learning method to estimate stroke volume variation (SVV), a widely used predictor of fluid responsiveness, from arterial blood pressure waveform (ABPW). Methods: In total, 557 patients and 8,512,564 SVV datasets were collected and were divid...
Autores principales: | Kwon, Hye-Mee, Seo, Woo-Young, Kim, Jae-Man, Shim, Woo-Hyun, Kim, Sung-Hoon, Hwang, Gyu-Sam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347322/ https://www.ncbi.nlm.nih.gov/pubmed/34372366 http://dx.doi.org/10.3390/s21155130 |
Ejemplares similares
-
Deep Learning-Based Stroke Volume Estimation Outperforms Conventional Arterial Contour Method in Patients with Hemodynamic Instability
por: Moon, Young-Jin, et al.
Publicado: (2019) -
Predicting Successes and Failures of Clinical Trials With Outer Product–Based Convolutional Neural Network
por: Seo, Sangwoo, et al.
Publicado: (2021) -
Detection and Length Measurement of Cracks Captured in Low Definitions Using Convolutional Neural Networks
por: Kim, Jin-Young, et al.
Publicado: (2023) -
Inter-floor noise classification using convolutional neural network
por: Shin, Hye-kyung, et al.
Publicado: (2020) -
Convolutional neural network-based reconstruction for positronium annihilation localization
por: Jegal, Jin, et al.
Publicado: (2022)