Cargando…

A Method for Real-Time Fault Detection of Liquid Rocket Engine Based on Adaptive Genetic Algorithm Optimizing Back Propagation Neural Network

A real-time fault diagnosis method utilizing an adaptive genetic algorithm to optimize a back propagation (BP) neural network is intended to achieve real-time fault detection of a liquid rocket engine (LRE). In this paper, the authors employ an adaptive genetic algorithm to optimize a BP neural netw...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Huahuang, Wang, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347358/
https://www.ncbi.nlm.nih.gov/pubmed/34372263
http://dx.doi.org/10.3390/s21155026
Descripción
Sumario:A real-time fault diagnosis method utilizing an adaptive genetic algorithm to optimize a back propagation (BP) neural network is intended to achieve real-time fault detection of a liquid rocket engine (LRE). In this paper, the authors employ an adaptive genetic algorithm to optimize a BP neural network, produce real-time predictions regarding sensor data, compare the projected value to the actual data collected, and determine whether the engine is malfunctioning using a threshold judgment mechanism. The proposed fault detection method is simulated and verified using data from a certain type of liquid hydrogen and liquid oxygen rocket engine. The experiment results show that this method can effectively diagnose this liquid hydrogen and liquid oxygen rocket engine in real-time. The proposed method has higher system sensitivity and robustness compared with the results obtained from a single BP neural network model and a BP neural network model optimized by a traditional genetic algorithm (GA), and the method has engineering application value.