Cargando…

Effect of Extrusion Parameters on Short Fiber Alignment in Fused Filament Fabrication

Additive manufacturing by material extrusion such as the widespread fused filament fabrication is able to improve 3D printed part performance by using short fiber reinforced composite materials. Fiber alignment is critical for the exploitation of their reinforcing effect. This work investigates the...

Descripción completa

Detalles Bibliográficos
Autores principales: Consul, Patrick, Beuerlein, Kai-Uwe, Luzha, Genc, Drechsler, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347408/
https://www.ncbi.nlm.nih.gov/pubmed/34372046
http://dx.doi.org/10.3390/polym13152443
Descripción
Sumario:Additive manufacturing by material extrusion such as the widespread fused filament fabrication is able to improve 3D printed part performance by using short fiber reinforced composite materials. Fiber alignment is critical for the exploitation of their reinforcing effect. This work investigates the influence extrusion parameters have on the fiber alignment by conducting set of experiments on the process parameters determining whether the flow under the nozzle is convergent or divergent. A strong impact of flow conditions during extrusion line shaping on the fiber alignment is observed and two extremes are tested which show a large difference in strength, stiffness and strain at break in tensile testing along the extrusion lines. From highest to lowest fiber alignment, strength is reduced by 41% and stiffness by 54%. Fiber misalignment also leads to inhomogeneous strain fields in the layers when tested perpendicular to the extrusion lines. It is demonstrated that material flow after the nozzle has a high impact on the material properties of short fiber reinforced 3D printed parts and needs to be considered in process design.