Cargando…
On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations
Monolayer graphene is now produced at significant yields, by liquid phase exfoliation of graphites in solvents. This has increased the interest in molecular simulation studies to give new insights in the field. We use decoupling simulations to compute the exfoliation free energy of graphenes in a li...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347420/ https://www.ncbi.nlm.nih.gov/pubmed/34361058 http://dx.doi.org/10.3390/ijms22158291 |
_version_ | 1783735085406617600 |
---|---|
author | Gotzias, Anastasios Tocci, Elena Sapalidis, Andreas |
author_facet | Gotzias, Anastasios Tocci, Elena Sapalidis, Andreas |
author_sort | Gotzias, Anastasios |
collection | PubMed |
description | Monolayer graphene is now produced at significant yields, by liquid phase exfoliation of graphites in solvents. This has increased the interest in molecular simulation studies to give new insights in the field. We use decoupling simulations to compute the exfoliation free energy of graphenes in a liquid environment. Starting from a bilayer graphene configuration, we decouple the Van der Waals interactions of a graphene monolayer in the presence of saline water. Then, we introduce the monolayer back into water by coupling its interactions with water molecules and ions. A different approach to compute the graphene exfoliation free energy is to use umbrella sampling. We apply umbrella sampling after pulling the graphene monolayer on the shear direction up to a distance from a bilayer. We show that the decoupling and umbrella methods give highly consistent free energy results for three bilayer graphene samples with different size. This strongly suggests that the systems in both methods remain closely in equilibrium as we move between the states before and after the exfoliation. Therefore, the amount of nonequilibrium work needed to peel the two layers apart is minimized efficiently. |
format | Online Article Text |
id | pubmed-8347420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83474202021-08-08 On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations Gotzias, Anastasios Tocci, Elena Sapalidis, Andreas Int J Mol Sci Article Monolayer graphene is now produced at significant yields, by liquid phase exfoliation of graphites in solvents. This has increased the interest in molecular simulation studies to give new insights in the field. We use decoupling simulations to compute the exfoliation free energy of graphenes in a liquid environment. Starting from a bilayer graphene configuration, we decouple the Van der Waals interactions of a graphene monolayer in the presence of saline water. Then, we introduce the monolayer back into water by coupling its interactions with water molecules and ions. A different approach to compute the graphene exfoliation free energy is to use umbrella sampling. We apply umbrella sampling after pulling the graphene monolayer on the shear direction up to a distance from a bilayer. We show that the decoupling and umbrella methods give highly consistent free energy results for three bilayer graphene samples with different size. This strongly suggests that the systems in both methods remain closely in equilibrium as we move between the states before and after the exfoliation. Therefore, the amount of nonequilibrium work needed to peel the two layers apart is minimized efficiently. MDPI 2021-08-02 /pmc/articles/PMC8347420/ /pubmed/34361058 http://dx.doi.org/10.3390/ijms22158291 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gotzias, Anastasios Tocci, Elena Sapalidis, Andreas On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations |
title | On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations |
title_full | On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations |
title_fullStr | On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations |
title_full_unstemmed | On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations |
title_short | On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations |
title_sort | on the consistency of the exfoliation free energy of graphenes by molecular simulations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347420/ https://www.ncbi.nlm.nih.gov/pubmed/34361058 http://dx.doi.org/10.3390/ijms22158291 |
work_keys_str_mv | AT gotziasanastasios ontheconsistencyoftheexfoliationfreeenergyofgraphenesbymolecularsimulations AT toccielena ontheconsistencyoftheexfoliationfreeenergyofgraphenesbymolecularsimulations AT sapalidisandreas ontheconsistencyoftheexfoliationfreeenergyofgraphenesbymolecularsimulations |