Cargando…
Pre-Processing Method to Improve Cross-Domain Fault Diagnosis for Bearing
Models trained with one system fail to identify other systems accurately because of domain shifts. To perform domain adaptation, numerous studies have been conducted in many fields and have successfully aligned different domains into one domain. The domain shift problem is caused by the difference o...
Autores principales: | Kim, Taeyun, Chai, Jangbom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347430/ https://www.ncbi.nlm.nih.gov/pubmed/34372204 http://dx.doi.org/10.3390/s21154970 |
Ejemplares similares
-
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
Investigation of Feature Engineering Methods for Domain-Knowledge-Assisted Bearing Fault Diagnosis
por: Bienefeld, Christoph, et al.
Publicado: (2023) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022) -
Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis
por: Zhang, Long, et al.
Publicado: (2022) -
Fault Diagnosis Method of Roadheader Bearing Based on VMD and Domain Adaptive Transfer Learning
por: Qu, Xiaofei, et al.
Publicado: (2023)